1.

What is the product of the perpendiculars from the two points `(pm sqrt(b^(2)-a^(2)), 0)` to the line `ax cos phi + by sin phi =ab` ?A. `a^(2)`B. `b^(2)`C. `ab`D. `a//b`

Answer» Correct Answer - A
Given equation of line is `ax cos phi +by sin phi -ab =0`
Let `d_(1)` be the perpendicular distance from
`(sqrt(b^(2)-a^(2)), 0)` to the line `ax cos phi + by sin phi-ab=0` and `d_(2)` from `(-sqrt(b^(2)-a^(2)), 0)` to the line `ax cos phi + by sin phi -ab =0`
At point `(sqrt(b^(2)-a^(2)), 0)`
`d_(1)=(asqrt(b^(2)-a^(2)) cos phi -ab)/sqrt(a^(2) cos^(2) phi +b^(2) sin^(2) phi)`
At point `(-sqrt(b^(2)-a^(2)), 0)`
`d_(2)=(-asqrt(b^(2)-a^(2))cos phi-ab)/sqrt(a^(2) cos^(2) phi +b^(2) sin^(2) phi)`
`:. d_(1)d_(2)=-([a^(2)(b^(2)-a^(2)) cos^(2) phi-a^(2)b^(2)])/(a^(2) cos^(2) phi+b^(2) sin^(2) phi)`
`= - (a^(2) (-b^(2) sin^(2) phi -a^(2) cos^(2) phi))/(a^(2) cos^(2) phi+b^(2) sin^(2) phi)=a^(2)`


Discussion

No Comment Found

Related InterviewSolutions