1.

What is the ratio of sum of squares of roots to the product of the roots of the equation 7x2 + 12x + 18 = 0?

Answer»

Let α, β be the roots of the equation 7x2 + 12x + 18 = 0.

\(\bigg[\)For a quadratic equation ax2 + bx + c = 0, sum of roots = \(-\frac{a}{b}\), product of roots = + \(\frac{c}{a}\)\(\bigg]\)

∴ α + β = \(\frac{12}{7}\) and αβ = \(\frac{18}{7}\)

⇒ (α + β)2\(\bigg(\frac{-12}{7}\bigg)^2\) ⇒ α2 + β+ 2αβ = \(\frac{144}{49}\)

⇒ α2 + β2\(\frac{144}{49}\) - \(\frac{36}{7}\) = \(\frac{-108}{49}\)

∴ Required ratio = α2 + β2 : αβ = \(\frac{​​\frac{-108}{49}}{\frac{18}{7}}\) = \(-\frac{6}{7}\) = – 6 : 7.



Discussion

No Comment Found