InterviewSolution
| 1. |
What is the value of \(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\)?1. 22. -23. 14. -1 |
|
Answer» Correct Answer - Option 1 : 2 GIVEN: \(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\) FORMULA USED: (a + b)(a- b) = a2 – b2 \(co{s^6}\theta \; + \;si{n^6}\theta = 1 - 3{\sin ^2}\theta {\cos ^2}\theta \) sin2θ + cos2θ = 1 CALCULATION: \(\left[ {\frac{{\left( {sin\theta \; + \;cos\theta \; + \;1} \right)\left( {sin\theta \; + \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( {co{s^6}\theta \; + \;si{n^6}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\) ⇒\(\left[ {\frac{{\left[ {{{\left( {sin\theta \; + \;cos\theta } \right)}^2} - 1} \right]sec\theta \;cosec\theta }}{{\left( {1 - 3{{\sin }^2}\theta {{\cos }^2}\theta \; + \;3si{n^2}\theta \;co{s^2}\theta } \right)}}} \right]\) ⇒\(\left[ {\frac{{({{\sin }^2}\theta \; + \;{{\cos }^2}\theta \; + \;2sin\theta \;cos\theta - 1)sec\theta \;cosec\theta }}{{\left( 1 \right)}}} \right]\) ⇒\(\left[ {\frac{{\left( {1\; + \;2sin\theta \;cos\theta - 1} \right)sec\theta \;cosec\theta }}{{\left( 1 \right)}}} \right]\) ⇒ 2sin θ cos θ sec θ cosec θ ⇒ 2 |
|