

InterviewSolution
Saved Bookmarks
1. |
Which of the following function is (are) even, odd, or neither?`f(x)=x^2sinx``f(x)=sqrt(1+x+x^2)-sqrt(1-x+x^2)``f(x)=log((1-x)/(1+x))``f(x)=log(x+sqrt(1+x^2))``f(x)=sinx-cosx``f(x)=(e^x+e^(-x))/2` |
Answer» (i) `f(-x)=(-x)^(2) sin(-x)= -x^(2)sinx= -f(x)` Hence, f(x) is odd. (ii) `f(-x)=sqrt(1+(-x)+(-x)^(2))-sqrt(1-(-x)+(-x)^(2)) ` `=sqrt(1-x+x^(2))-sqrt(1+x+x^(2))` `= -f(x)` Hence, f(x) is odd. (iii) `f(-x)=log{(1-(-x))/(1+(-x))}` ` log((1+x)/(1-x))` `= -f(x)` Hence, f(x) is odd. (iv) `f(-x)=log(-x+sqrt(1+(-x)^(2)))` `=log{((-x+sqrt(1+x^(2)))(x+sqrt(1+x^(2))))/((x+sqrt(1+x^(2))))}` `log((1)/(x+sqrt(1+x^(2))))= -f(x)` Hence, f(x) is odd. (v) `f(-x)=sin(-x)-cos(-x)= -sinx-cosx` Clearly, `f(-x) ne f(x) " and " f(-x) ne -f(x).` Hence, f(x) is neither even nor odd. (vi) `f(-x)=(e^(-x)+e^(-(-x)))/(2)=(e^(-x)+e^(x))/(2)=f(x)` Hence, f(x) is even. |
|