InterviewSolution
Saved Bookmarks
| 1. |
Which of the following is a general solution of `(d^(2)y)/(dx^(2))-2(dy)/(dx)+y=0`A. `y=(Ax+B)e^(x)`B. `y=(Ax+B)e^(-x)`C. `y=Ax^(x)+Be^(-x)`D. `y=Acos x+Bsinx` |
|
Answer» Given that, `(d^(2)y)/(dx^(2))-2(dy)/(dx)+y=0` `D^(2)-2Dy+y=0` `"where" D=(d)/(dx)` `(D^(2)-2D+1)y=0` The auxiliary equation is `m^(2)-2m+1=0 `(m-1)^(2)+1=0` `(m-1)^(2)=0 Rightarrow m=1,1` Since, the roots are real and equal `CF=(Ax+B)e^(x) Rightarrow y=(Ax+B)e^(x)` Since, if roots of Auxiliary equation are real and equal say (m), then `CF=(C_(1)x+C_(2))e^(mx)]` |
|