InterviewSolution
Saved Bookmarks
| 1. |
Which of the following is/are correct?A. always 1B. always -1C. `(-1)^(m+1)`D. `(-1)^(n-m)` |
|
Answer» Correct Answer - A::B::C `(1)underset(xto0^(+))lim([x+|x|])/(x)=underset(xto0^(+))lim([x+x])/(x)=underset(xto0^(+))lim([2x])/(x)=0` `underset(xto0^(-))lim([x+|x|])/(x)=underset(xto0^(-))lim([x-x])/(x)=underset(xto0^(-))lim(0)/(x)=0` `(2)underset(xto0^(+))lim(xe^((1)/(x)))/(1+e^((1)/(x)))=underset(xto0^(+))lim(x)/(1+e^(-(1)/(x)))=0` `underset(xto0^(-))lim(xe^((1)/(x)))/(1+e^((1)/(x)))=0` `(3)underset(xto3^(+))lim(x-3)^((1)/(5))sgn(x-3)=underset(xto3^(+))lim(x-3)^((1)/(5))xx1=0` `underset(xto3^(-))lim(x-3)^((1)/(5))sgn(x-3)=underset(xto3^(-))lim(x-3)^((1)/(5))xx(-1)=0` `(4)underset(xto0^(+))lim(tan^(-1)|x|)/(x)=underset(xto0^(+))lim(tan^(-1)x)/(x)=1` `underset(xto0^(-))lim(tan^(-1)|x|)/(x)=underset(xto0^(+))limtan^(-1)(-x)/(x)=-1` |
|