1.

Without finding the cubes, factorise (x – y)3 + (y – z) 3 + (z – x) 3.

Answer»

We know that x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx). 

If x + y + z = 0, then x3 + y3 + z3 – 3xyz = 0 or x3 + y3 + z3 = 3xyz. 

Here, (x – y) + (y – z) + (z – x) = 0 

Therefore, (x – y)3 + (y – z)3 + (z – x)3 

= 3(x – y) (y – z) (z – x).



Discussion

No Comment Found