1.

Write the Dimension of a/b in the relation F=a√x +bt²

Answer» Hello friend,f = a√x + bt2, where f = (M L T\xa0−2(, x = (L) and t = (T).f = a√x = bt2f = a√x(M L T\xa0−2)\xa0= (a L½)= (a) = (M L½\xa0T\xa0−2)F = (bt2)(M L T\xa0−2)\xa0= (b T2)= (b) = (M L T−4)(a)/(b) = (M L½\xa0T\xa0−2)/(M L T−4)\xa0= (M0\xa0L−½\xa0T2)So, (a/b) = (M0\xa0L−½\xa0T2)Hope it helps!!!


Discussion

No Comment Found