1.

Write the following function in the simplest form: `tan^(-1)(sqrt(1+x^2)-1)/x , x!=0`

Answer» `tan^(-1)""(sqrt(1+c^(2))-1)/(x) " " Let x=tan theta implies tan^(-1)x=theta`
`=tan^(-1)""(sqrt(1+tan^(2))-1)/(tan theta)`
`tan^(-1)((sec theta-1)/(tan theta))=tan^(-1)(((1)/(cos theta)-1)/((sin theta)/(cos theta)))`
`=tan^(-1)((1-cos theta)/(sin theta))=tan^(-1)((2 sin^(2)""(theta)/(2))/(2 sin ""(theta)/(2) cos ""(theta)/(2)))`
`tan^(-1)(tan""(theta)/(2))=(1)/(2) theta=(1)/(2) tan^(-1)x`


Discussion

No Comment Found