InterviewSolution
Saved Bookmarks
| 1. |
Prove that:`sin^(-1)8/(17)+sin^(-1)3/5=tan^(-1)(77)/(36)` |
|
Answer» LHS=`sin^(-1)""(8)/(17)+sin^(-1)""(3)/(5)` `=sin^(-1)""[(8)/(17)sqrt(1-((3)/(4))^(2))+(3)/(5)sqrt(1-((8)/(17))^(2))]` `=sin^(-1)[(8)/(17)xx(4)/(5)+(3)/(5)xx(15)/(17)]` `( :.sin^(1)x=tan^(-1)""(x)/(sqrt(1-x^(2))))` `=sin^(-1)""(77)/(85)=tan^(-1)""(77//85)/(sqrt(1-((77)/(85))^(2)))` `tan^(-1)((77//875)/(36//85))=tan^(-1)""(77)/(36)`= RHS Hence proved. |
|