1.

`x dy/dx -y= log x,` given that `y = 0` when `x = 1.`

Answer» Correct Answer - `y = x - 1 - log x `
`IF = e ^( -int (1)/(x) dx ) = e ^(-log x ) = e^( log ( 1//x)) = (1)/(x)`
` y xx (1)/(x) = int ( underset ("I" ) log x *underset ("II") ((1)/(x^(2)))) dx +C`.


Discussion

No Comment Found