InterviewSolution
Saved Bookmarks
| 1. |
`y=ae^(mx)+b^(-mx)` satisfies which of the following differential equation?A. `(dy)/(dx)+my=0`B. `(dy)/(dx)-my=0`C. `(d^(2)y)/(dx^(2))-m^(2)y=0`D. `(d^(2)y)/(dx^(2))+m^(2)y=0` |
|
Answer» Given that, `" "y=ae^(mx)+be^(-mx)` On differentiating both sides w.r.t. x, we get `" "(dy)/(dx)=mae^(mx)-bme^(-mx)` Again, differentiating both sides w.r.t. x, we get `" "(d^(2)y)/(dx^(2))=m^(2)ae^(mx)+bm^(2)e^(-mx)` `rArr" "(d^(2)y)/(dx^(2))=m^(2)(ae^(mn)+be^(-mn))` `rArr" "(d^(2)y)/(dx^(2))=m^(2)y` `rArr" "(d^(2)y)/(dx^(2))-m^(2)y=0` |
|