1.

यदि `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n)` तो साबित कीजिए कि `(C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+(C_(7))/(8)+......=(2^(n))/(n+1)`

Answer» दिया गया श्रेणी है : `(C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+......`
इसका r वाँ पद `t_(r)=(""^(n)C_(2r-1))/(2r)=(""^(n)C_(2r-1))/((2r-1)+1)=(""^(n+1)C_(2r))/(n+1)`
अब `(C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+...`
`=underset(r=1)sumt_(r)=(1)/(n+1)underset(r=1)sum""^(n+1)C_(2r)`
`=(1)/(n+1)[""^(n+1)C_(2)+""^(n+1)C_(4)+""^(n+1)C_(6)+...]`
`=(1)/(n+1)[(""^(n+1)C_(0)+""^(n+1)C_(2)+""^(n+1)C_(4)+.......)-""^(n+1)C_(0)]`
`=(1)/(n+1)(2^(n)-1)" "[because""^(n)C_(0)+""^(n)C_(2)+""^(n)C_(4)+...=2^(n-1)]`
`=(2^(n)-1)/(n+1)`


Discussion

No Comment Found

Related InterviewSolutions