1.

यदि `A=[(0,1),(1,0)]` और `B=[(0-i),(i,0)]` जहां `i^(2)=-1` तो दर्शाइए कि `(A+B)^(2)=A^(2)+B^(2)`.

Answer» `A+B=[(0,1),(1,0)+[(0,-i),(i,0)]`
`=(0+0,1-i),(1+I,0+0)]=[(0,1-i),1+I,0)]`
`:.(A+B)^(2)=[(0,1-i),(1+I,0)]xx[(0,1-i),(1+I,0)]`
`=[(1-i^(2),0),(0,1-t^(2))]=[(2,0),(0,2)]`……..1
अब `A^(2)=[(0,1),(1,0)][(0,1),(0,0)]=[(1,0),(0,1)]`
तथा `B^(2)=[(0,i),(i,0)][(0,-i),(i,0)]`
`=[(-i^(2),0),(0,-i^(2))]=[(1,0),(0,1)]`
`:.A^(2)+B^(2)=[(1,0),(0,1)]+[(1,0),(0,1)]`
`=[(2,0),(0,2)]`....2
समीकरण 1 व 2 से
`(A+B)^(2)=A^(2)+B^(2)`


Discussion

No Comment Found

Related InterviewSolutions