InterviewSolution
Saved Bookmarks
| 1. |
यदि `A=[(1,-1),(2,3)],B=[(2,1),(1,0)]` तो सिद्ध कीजिए कि`(A+B)^(2)!=A^(2)+2AB+B^(2)`. |
|
Answer» यहां `A=[(1,-1),(2,3)]` और `B=[(2,1),(1,0)]` `:.A^(2)=AA=[(1,-1),(2,3)][(1,-1),(2,3)]=[(-1,-4),(8,7)]` `AB=[(1,-1),(2,3)][(2,1),(1,0)]=[(1,1),(7,2)]` `implies2AB=[(2,2),(14,4)]` `B^(2)=BB=[(2,1),(1,0)][(2,1),(1,0)]=[(5,2),(2,1)]` `A+B=[(1,-1),(2,3)]+[-(2,1),(1,0)]=[(3,0),(3,3)]` `implies(A+B)^(2)=(A+B)(A+B)` `=[(3,0),(3,3)][(3,0),(3,3)]=[(9,0),(18,9)]`……1 साथ ही `A^(2)+2AB+B^(2)` `=[(-1,-4),(8,7)]+[(2,2)lt(14,4)]+[(5,2),(2,1)]` `=[(6,0),(24,12)]`………….2 समीकरण 1 और 2 से `(A+B)^(2)!=A^(2)+2AB+B^(2)` |
|