1.

यदि `A=[(1,-1),(2,3)],B=[(2,1),(1,0)]` तो सिद्ध कीजिए कि`(A+B)^(2)!=A^(2)+2AB+B^(2)`.

Answer» यहां
`A=[(1,-1),(2,3)]` और `B=[(2,1),(1,0)]`
`:.A^(2)=AA=[(1,-1),(2,3)][(1,-1),(2,3)]=[(-1,-4),(8,7)]`
`AB=[(1,-1),(2,3)][(2,1),(1,0)]=[(1,1),(7,2)]`
`implies2AB=[(2,2),(14,4)]`
`B^(2)=BB=[(2,1),(1,0)][(2,1),(1,0)]=[(5,2),(2,1)]`
`A+B=[(1,-1),(2,3)]+[-(2,1),(1,0)]=[(3,0),(3,3)]`
`implies(A+B)^(2)=(A+B)(A+B)`
`=[(3,0),(3,3)][(3,0),(3,3)]=[(9,0),(18,9)]`……1
साथ ही `A^(2)+2AB+B^(2)`
`=[(-1,-4),(8,7)]+[(2,2)lt(14,4)]+[(5,2),(2,1)]`
`=[(6,0),(24,12)]`………….2
समीकरण 1 और 2 से
`(A+B)^(2)!=A^(2)+2AB+B^(2)`


Discussion

No Comment Found

Related InterviewSolutions