1.

यदि `A=[(3,-3,4),(2,-3,4),(0,-1,1)]` तो दिखाइए कि `A^(3)=A^(-1)`

Answer» `A^(2)=A.A`
`=[(3,-3,4),(2,-3,4),(0,-1,1)][(3,-3,4),(2,-3,4),(0,-1,1)]`
`=[(9-6+0,-9+9-4,12-12+4),(6-6+0,-6+9-4,8-12+4),(0-2+0,0+3-1,0-4+1)]`
`=[(3,-4,4),(0,-1,0),(-2,2,-3)]`
और `A^(4)=A^(2).A^(2)`
`=[(3,-4,4),(0,-1,0),(-2,2,-3)][(3,-4,4),(0,-1,0),(-2,2,-3)]`
`=[(9+0-8,-12+4+8,12+0-12),(0+-0+0,0+1+0,0+0+0),(-6+0+6,8-2-6,-8+0+9)]`
`=[(1,0,0),(0,1,0),(0,0,1)]=I`
`:.A^(4)=I`..............1
अब `|A|=|(3,-3,4),(2,-3,4),(0,-1,1)|`
`=3|(-3,4),(-1,1)|-2|(-3,4),(-1,1)|+0` ( `C_(1)` के विस्तार)
`=3(-3+4)-2(-3+4)`
`=3-2=1!=0`
`:.A` व्‍युत्‍क्रमणीय है
`implies A^(-1)` का अस्तित्व है।
समीकरण 1 से
`A^(4)=I`
`impliesA^(-1)A^(4)=A^(-1)I`
`A^(3)=A^(-1)`


Discussion

No Comment Found

Related InterviewSolutions