1.

यदि `A+B+C=pi`, तो सिद्ध कीजिए - `|(sin(A+B+C),sin(A+C),cosC),(-sinB,0,tanA),(cos(A+B),tan(B+C),0)|=0`.

Answer» यहाँ `A+B+C=pi` , तब
`A+C=pi-B,A+B=pi-C,B+C=pi-A`.
`therefore sin (A+B+C)=sin pi = 0`.
`sin (A+C)=sin(pi-B)=sinB`,
`cos (A+B)=cos (pi-C)=-cos C`,
`tan (B+C)=tan(pi-A)=-tanA`.
अब , L.H.S.`=|(sin(A+B+C),sin(A+C),cosC),(-sinB,0,tanA),(cos(A+B),tan(B+C),0)|`
`=|(0,sin,cosC),(-sinB,0,tanA),(-cosC,tanA,0)|`
`=sin B|(sinB,cosC),(-tanA,0)|-cosC|(sinB,cosC),(0,tanA)|`.
(`C_1` के सापेक्ष प्रसार करने पर )
`=sinB(0+tanAcosC)-cosC(sinBtanA-0)`
`=sinBtanA cos C-sinB tan A cos C`
`=0=R.H.S`.


Discussion

No Comment Found

Related InterviewSolutions