1.

यदि `cos y = x cos (a+y)` तथा `cos a ne +-1`, तो सिद्ध कीजिये कि `y=(dy)/(dx)=(cos^(2)(a+y))/(" sin a")`

Answer» `cos y = x cos ( a+y)`
`rArr (cos y)/(cos (a+y))=x`
दोनों पक्षों का x के सापेक्ष अवकलन करने पर,
`cos (a+y)(-sin y) (dy)/(dx)`
`(-cos y { -sin (a+y)}(dy)/(dx))/(cos^(2)(a+y))=1`
`rArr ((dy)/(dx){-sin y cos (a+y)+cos y sin (a+y)})/(cos^(2)(a+y))=1`
`rArr (dy)/(dx)sin (a+y-y)=cos^(2)(a+y)`
`rArr (dy)/(dx)(sin a) = cos^(2)(a+y)`
`rArr (dy)/(dx)=(cos^(2)(a+y))/(sin a)`


Discussion

No Comment Found