1.

यदि `(d)/(dx)f(x)=4x^(3)-(3)/(x^(4))` जिसमें `f(2)=0` तो f (x) है :A. `x^(4)+(1)/(x^(3))-(129)/(8)`B. `x^(3)+(1)/(x^(4))+(129)/(8)`C. `x^(4)+(1)/(x^(3))+(129)/(8)`D. `x^(3)+(1)/(x^(4))-(129)/(8)`

Answer» `(d)/(dx)f(x)=4x^(3)-(3)/(x^(4))`
`rArr" "f(x)=4 intx^(3)dx-3 intx^(-4)dx=x^(4)+x^(-3)+c`
दिया है : `f(2)=0`
`rArr" "16+(1)/(8)+c=0`
`rArr" "c=-(129)/(8)`
`therefore" "f(x)=x^(4)+(1)/(x^(3))-(129)/(8)`


Discussion

No Comment Found