InterviewSolution
Saved Bookmarks
| 1. |
यदि `sin^(-1)x+tan^(-1)x=(pi)/(2)` तो सिद्ध कीजिए कि `2x^(2)+1=sqrt5` |
|
Answer» `impliestan^(-1)x=(pi)/(2)-sin^(-1)x=cos^(-1)x=tan^(-1)""(sqrt(1-x^(2)))/(x)` `impliesx=(sqrt(1-x^(2)))/(x)" implies "x^(2)=sqrt(1-x^(2))` `x^(4)=1-x^(2)" implies "x^(4)+x^(2)-1=0` `impliesx^(2)=(-1+-sqrt(1+4))/(2xx1)" implies "2x^(2)=-1+-sqrt5` `implies2x^(2)+1=sqrt5(":.2x^(2)+1=-sqrt5` सम्भव नहीं है।) |
|