1.

यदि `tan^(-1)((3)/(4))+tan^(-1)((1)/(k))=(pi)/(4)` हो, तो k का मान ज्ञात कीजिए ।

Answer» दिया है- `tan^(-1)((3)/(4))+tan^(-1)((1)/(k))=(pi)/(4)`
`rArr tan^(-1)((3)/(4))+tan^(-1)((1)/(k))=tan^(-1)1`
`rArr" "tan^(-1)((1)/(k))=tan^(-1)1-tan^(-1)((3)/(4))`
`=tan^(-1)((1)/(k))=tan^(-1)((1-(3)/(4))/(1+(3)/(4)))=tan^(-1)((1-(3)/(4))/(1+(3)/(4)))=tan^(-1)(((4-3)/(4))/((4+3)/(4)))`
`rArr tan^(-1)((1)/(k))=tan^(-1)((1)/(7))`
`rArr" "(1)/(k)=(1)/(7)`
`rArr" "k=7.`


Discussion

No Comment Found