InterviewSolution
Saved Bookmarks
| 1. |
यदि `tan^(-1)""((x-2)/(x-4))+tan^(-1)""((x+2)/(x+4))=(pi)/(4)` तब x का मान ज्ञात कीजिए । |
|
Answer» दी गयी समीकरण को हम इस प्रकार लिख सकते है । `tan^(-1)""((x-2)/(x-4))=(pi)/(4)-tan^(-1)""((x+2)/(x+4))` `=tan^(-1)1-tan^(-1)""((x+2)/(x+4))=tan^(-1)""[(1-(x+2)/(x+4))/(1+(x+2)/(x+4))]` `=tan^(-1)""((2)/(2x+6))=tan^(-1)""((1)/(x+3))` इसलिए , `(x-2)/(x-4)=(1)/(x+3)` `implies (x-2)(x+3)=x-4` `implies x^(2)+x-6=x-4` `implies x^(2)=2 implies x=pm sqrt(2)` |
|