1.

यदि `tan^(-1)x+tan^(-1)y=(pi)/(4),xy lt 1,` तब `x+y+xy` का मान ज्ञात कीजिए ।

Answer» यहाँ `tan^(-1)x+tan^(-1)y=(pi)/(4)," यदि "xy lt 1`
हम जानते हैं कि
`tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)), xy lt 1`
`therefore" "tan^(-1)((x+y)/(1-xy))=(pi)/(4)`
`rArr" "(x+y)/(1-xy)= tan((pi)/(4))`
`rArr" "(x+y)/(1-xy)=tan((pi)/(4))`
`rArr" "(x+y)/(1-xy)=1`
`rArr" "x+y=1-xy`
`rArr" "x+y+xy=1.`


Discussion

No Comment Found