InterviewSolution
Saved Bookmarks
| 1. |
यदि `tan^(-1)x+tan^(-1)y=(pi)/(4),xy lt 1,` तब `x+y+xy` का मान ज्ञात कीजिए । |
|
Answer» यहाँ `tan^(-1)x+tan^(-1)y=(pi)/(4)," यदि "xy lt 1` हम जानते हैं कि `tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)), xy lt 1` `therefore" "tan^(-1)((x+y)/(1-xy))=(pi)/(4)` `rArr" "(x+y)/(1-xy)= tan((pi)/(4))` `rArr" "(x+y)/(1-xy)=tan((pi)/(4))` `rArr" "(x+y)/(1-xy)=1` `rArr" "x+y=1-xy` `rArr" "x+y+xy=1.` |
|