1.

यदि `tan^(-1)x+tan^(-1)y+tan^(-1)z=pi` तो सिद्ध कीजिए कि `x+y+z=xyz`

Answer» `tan^(-1)x+tan^(-1)y+tan^(-1)z=pi`
`impliestan^(-1)""(x+y)/(1-xy)+tan^(-1)z=pi`
`impliestan^(-1)""((x+y)/(1-xy)+z)/(1-(x+y)/(1-xy).z)=pi`
`(x+y+z(1-xy))/(1-xy-(x+y).z)-tanpi=0`
`impliesx+y+z-xyz=0`
`impliesx+y+z=xyz`


Discussion

No Comment Found