 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | यदि `x=(sqrt(2)+1)/(sqrt(2)-1),y=(sqrt(2)-1)/(sqrt(2)+1)` तो दिखाइए कि `x^(2)+xy+y^(2)=35` | 
| Answer» यहां `x=(sqrt(2)+1)/(sqrt(2-1))=(sqrt(2+1))/(sqrt(2-1))xx(sqrt(2)+1)/(sqrt(2)+1)=((sqrt(2)+1)^(2))/((sqrt(2))^(2)-1^(2))` `=(2+1+2sqrt(2))/(2-1)=(3+2sqrt(2))/1=3=2sqrt(2)` इसी प्रकार `y=(sqrt(2)-1)/(sqrt(2)+1)=(sqrt(2)-1)/(sqrt(2)+1)xx(sqrt(2)-1)/(sqrt(2)-1)=((sqrt(2)-1)^(2))/((sqrt(2))^(2)-1^(2))` `=(2+1-2sqrt(2))/(2-1)=3-2sqrt(2)` `:. x^(2)+xy+y^(2)=(3+2sqrt(2))^(2)+(3+2sqrt(2))(3-2sqrt(2))+(3-2sqrt(2))^(2)` ltbgt `=9+8+12sqrt(2)+9-8+9+8-12sqrt(12)=35` | |