1.

यदि `x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))` व `y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))`, तब `x+y` का मान ज्ञात कीजिए ।

Answer» यहाँ `x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))xx(sqrt(3)+sqrt(2))/(sqrt(3)+sqrt(2))=((sqrt(3)+sqrt(2))^(2))/((sqrt(3))^(2)-(sqrt(2))^(2))`
`=((sqrt(3)+sqrt(2))^(2))/(3-2)=(sqrt(3)+sqrt(2))^(2)[(sqrt(3))^(2)+(sqrt(2))^(2)+2xx sqrt(3)xx sqrt(2)]`
`=3+2+2sqrt(6)=5+2sqrt(6)`
इसी प्रकार `y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))=5-2sqrt(6)`
अतः `x+y=5+2sqrt(6)+5-2sqrt(6)=10`


Discussion

No Comment Found