InterviewSolution
Saved Bookmarks
| 1. |
यदि `y=sqrt((1-sin2x)/(1+sin2x))` तो सिद्ध कीजिये कि `(dy)/(dx)+sec^(2)(pi/4-x)=0`. |
|
Answer» `y=sqrt((1-sin2x)/(1+sin 2 x))` `rArr (sqrt(cos^(2)x+sin^(2)x-2sin x cos x))/(sqrt(cos^(2)x+sin^(2)x+2sin x cos x))` `=sqrt(((cosx-sinx)/(cosx + sin x))^(2))=(cos x - sin x)/(cos x + sinx )` `=(1-tanx)/(1+tan x)=(tan (pi)/(4)-tan x)/(1+tan(pi)/(4) tan x)` `=tan ((pi)/(4)-x)` `:. (dy)/(dx)=sec^(2)((pi)/(4)-x) (d)/(dx) ((pi)/(4)-x)` `=sec^(2)((pi)/(4)-x)(-1)` या `(dy)/(dx)+sec^(2)((pi)/(4)-x)=0` ( इति सिध्दम ) |
|