

InterviewSolution
Saved Bookmarks
1. |
`Zn|Zn^(2+)(a=0.1M)||Fe^(2+)(a=0.01M)Fe.` The `EMF` of the above cell is `0.2905`. The equilibrium constant for the cell reaction isA. `10^(0.32//0.0591)`B. `10^(0.32//0.0295)`C. `10^(0.26//0.0295)`D. `e^(0.32//0.2995)` |
Answer» Correct Answer - b `Zn|Zn^(2+)(a=0.1M)||Fe^(2+)(a=0.01M)|Fe` the cell reaction `i. Zn(s)rarr Zn^(2+)(aq)+2e^(-)` `ii. Fe^(2+)(aq)+2e^(-) rarr Fe(s)` `ulbar(Zn(s)+Fe^(2+)(aq) rarr Zn^(2+)+Fe(s))` On applying Nernst equation, `E_(cell)=E^(c-)._(cell)-(0.0591)/(n)log.([Zn^(2+)])/([Fe^(2+)])` `0.2905=E^(c-)._(cell)-(0.0591)/(2)log.(0.1)/(0.01)` `0.2905=E^(c-)._(cell)-0.02905xxlog10` `0.295=E^(c-)._(cell0-0.2905xx1` `:. E^(c-)._(cell)=0.2905+0.0295=0.32V` At equilibrium `(E_(cell)=0)`, `E_(cell)=E^(c-)._(cell)-(0.0591)/(n)log K_(c)` `:. 0=E^(c-)._(cell)-(0.0591)/(n)logK_(c)` or `E^(c-)._(cell)=(0.0591)/(2)logK_(c)` `0.32=(0.0591)/(2)logK_(c)` or `K_(c)=10^(0.32//0.295)` |
|