Explore topic-wise InterviewSolutions in Current Affairs.

This section includes 7 InterviewSolutions, each offering curated multiple-choice questions to sharpen your Current Affairs knowledge and support exam preparation. Choose a topic below to get started.

1.

If a + b = 10 and ab = 21, find the value of a3 + b3.

Answer»

Given,

a + b = 10, ab = 21 

Choose a + b = 10 

Cubing both sides, 

(a + b)3 = (10)3 

a3 + b3 + 3ab(a + b) = 1000 

a3 + b3 + 3 x 21 x 10 = 1000 

a3 + b3 + 630 = 1000 

a3 + b3 = 1000 – 630

a3 + b3 = 370

2.

Using a2 − b2 = (a + b) (a − b), find(i) 512 − 492 (ii) (1.02)2 − (0.98)2

Answer»

(i) 512 − 492 = (51 + 49) (51 − 49)

= (100) (2) = 200

(ii) (1.02)2 − (0.98)2 = (1.02 + 0.98) (1.02 − 0.98) = (2) (0.04) = 0.08

3.

If x2 + y2 = 29 and xy = 2, find the value ofx – y

Answer»

Given ,

x – y

We know that

x2 + y2 = 29

x2 + y2 + 2xy – 2xy = 29

(x – y)2 + 2 (2) = 29

(x – y)2 + 4 = 29

(x – y)2 = 25

(x – y) = ± 5

4.

Find the following products:(i) (x + 4) (x + 7)(ii) (x – 11) (x + 4)(iii) (x + 7) (x – 5)

Answer»

(i) (x + 4) (x + 7)

= x (x + 7) + 4 (x + 7)

= x2 + 7x + 4x + 28

= x2 + 11x + 28

(ii) (x – 11) (x + 4

= x (x + 4) – 11 (x + 4)

= x2 + 4x – 11x – 44

= x2 – 7x – 44

(iii) (x + 7) (x – 5)

= x (x – 5) + 7 (x – 5)

= x2 – 5x + 7x – 35

= x2 + 2x – 35

5.

Find the following products:(i) (x – 3) (x – 2)(ii) (y2 – 4) (y2 – 3)(iii) (x + 4/3) (x + 3/4)

Answer»

(i) (x – 3) (x – 2)

= x (x – 2) – 3 (x – 2)

= x2 – 2x – 3x + 6

= x2 – 5x + 6

(ii) (y2 – 4) (y2 – 3)

= y2 (y2 – 3) – 4 (y2 – 3)

= y4 – 3y2 – 4y2 + 12

= y4 – 7y2 + 12

(iii) (x + 4/3) (x + 3/4)

= x (x + 3/4) + 4/3 (x + 3/4)

= x2 + 3x/4 + 4x/3 + 12/12

= x2 + 3x/4 + 4x/3 + 1

= x2 + 25x/12 + 1

6.

 Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5

Answer»

Let us simplify the given expression

= 2.3a5b2 × 1.2a2b2

= 2.3 × 1.2 × a5 × a2 × b2 × b2

= 2.76 × a5+2 × b2+2

= 2.76a7b4

Now let us substitute when, a = 1 and b = 0.5

For 2.76 a7 b4

= 2.76 (1)7 (0.5)4

= 2.76 × 1 × 0.0025

= 0.1725

= 6.9/40

7.

Find the following products:(i) (3x2 – 4xy) (3x2 – 3xy)(ii) (x + 1/5) (x + 5)(iii) (z + 3/4) (z + 4/3)(iv) (x2 + 4) (x2 + 9)(v) (y2 + 12) (y2 + 6)(vi) (y2 + 5/7) (y2 – 14/5)

Answer»

(i) (3x2 – 4xy) (3x2 – 3xy)

= 3x2 (3x2 – 3xy) – 4xy (3x2 – 3xy)

= 9x4 – 9x3y – 12x3y + 12x2y2

= 9x4 – 21x3y + 12x2y2

(ii) (x + 1/5) (x + 5)

= x (x + 1/5) + 5 (x + 1/5)

= x2 + x/5 + 5x + 1

= x2 + 26/5x + 1

(iii) (z + 3/4) (z + 4/3)

= z (z + 4/3) + 3/4 (z + 4/3)

= z2 + 4/3z + 3/4z + 12/12

= z2 + 4/3z + 3/4z + 1

= z2 + 25/12z + 1

(iv) (x2 + 4) (x2 + 9)

= x2 (x2 + 9) + 4 (x2 + 9)

= x4 + 9x2 + 4x2 + 36

= x4 + 13x2 + 36

(v) (y2 + 12) (y2 + 6)

= y2 (y2 + 6) + 12 (y2 + 6)

= y4 + 6y2 + 12y2 + 72

= y4 + 18y2 + 72

(vi) (y2 + 5/7) (y2 – 14/5)

= y2 (y2 – 14/5) + 5/7 (y2 – 14/5)

= y4 – 14/5y2 + 5/7y2 – 2

= y4 – 73/35y2 – 2

8.

Find the following products:(i) (3x + 5) (3x + 11)(ii) (2x2 – 3) (2x2 + 5)(iii) (z2 + 2) (z2 – 3)(iv)  (3x – 4y) (2x – 4y)

Answer»

(i) (3x + 5) (3x + 11)

= 3x (3x + 11) + 5 (3x + 11)

= 9x2 + 33x + 15x + 55

= 9x2 + 48x + 55

(ii) (2x2 – 3) (2x2 + 5)

= 2x2 (2x2 + 5) – 3 (2x2 + 5)

= 4x4 + 10x2 – 6x2 – 15

= 4x4 + 4x2 – 15

(iii) (z2 + 2) (z2 – 3)

= z2 (z2 – 3) + 2 (z2 – 3)

= z4 – 3z2 + 2z2 – 6

= z4 – z2 – 6

(iv) (3x – 4y) (2x – 4y)

= 3x (2x – 4y) – 4y (2x – 4y)

= 6x2 – 12xy – 8xy + 16y2

= 6x2 – 20xy + 16y2

9.

Simplify: a2b (a3– a + 1) – ab(a4 – 2a2 + 2a) – b(a3– a2 – 1)

Answer»

 a2b (a3– a + 1) – ab(a4 – 2a2 + 2a) – b(a3– a2 – 1)

= a5b – a3b + a2b – a5b + 2a3b – 2a2b – ba3 + a2b + b

= a5b – a5b – a3b + 2a3b – ba3 + a2b – 2a2b + a2b + b

= b

10.

Find the following products:(i) -8/27xyz (3/2xyz2 – 9/4xy2z3)(ii) -4/27xyz (9/2x2yz – 3/4xyz2)(iii) 1.5x (10x2y – 100xy2) 

Answer»

(i)  -8/27xyz (3/2xyz2 – 9/4xy2z3)

= -8/27xyz (3/2xyz2 – 9/4xy2z3)

= (-8/27xyz × 3/2xyz2) – (-8/27xyz × 9/4xy2z3)

= -4/9x2y2z3 + 2/3x2y3z4

(ii) -4/27xyz (9/2x2yz – 3/4xyz2)

= -4/27xyz (9/2x2yz – 3/4xyz2)

= (-4/27xyz × 9/2x2yz) – (-4/27xyz × 3/4xyz2)

= -2/3x3y2z2 + 1/9x2y2z3

(iii) 1.5x (10x2y – 100xy2)

= 1.5x (10x2y – 100xy2)

= (1.5x 10x2y) – (1.5x × 100xy2)

= 15x3y – 150x2y2

11.

Find the following products:(i) 6x/5(x3 + y3)(ii) xy (x3 – y3)(iii) 0.1y (0.1x5 + 0.1y)(iv) (-7/4ab2c – 6/25a2c2) (-50a2b2c2)

Answer»

(i)  6x/5(x3 + y3)

= 6/5x (x3 + y3)

= (6/5x × x3) + (6/5x × y3)

= 6/5x4 + 6/5xy3

(ii) xy (x3 – y3)

= xy (x3 – y3)

= (xy × x3) – (xy × y3)

= x4y – xy4

(iii) 0.1y (0.1x5 + 0.1y)

= 0.1y (0.1x5 + 0.1y)

= (0.1y × 0.1x5) + (0.1y × 0.1y)

= 0.01x5y + 0.01y2

(iv) (-7/4ab2c – 6/25a2c2) (-50a2b2c2)

= (-7/4ab2c – 6/25a2c2) (-50a2b2c2)

= (-7/4ab2c × -50a2b2c2) – (6/25a2c2 × -50a2b2 × c2)

= 350/4a3b4c3 + 12a4b2c4

= 175/2a3b4c3 + 12a4b2c4

12.

Evaluate each of the following using identities:(i) \((2x-\frac{1}{x})^2\)(ii) (2x+y) (2x - y)(iii) (a2b - b2a)2(iv) (a – 0.1) (a +0.1)(v) (1.5x2 - 0.3y2)(1.5x2 - 0.3y2)

Answer»

(i) We know, (a - b)2 = a2 + b2 -2ab

Here,

a = 2x and b = \(\frac{1}{x}\)

\((2x-\frac{1}{x})^2\) = \((2x)^2-(\frac{1}{x})^2 - 2\times x\times \frac{1}{x}\)

\((4x)^2-(\frac{1}{x})^2 - 2\)

(ii) We know, (a-b)2 = (a+b) (a - b)

(2x+y)(2x-y) = (2x)2– y2 = 4x2 – y2

(iii) We know, (a - b)2 = a2 + b2 - 2ab

Here,

(a2b - b2a)2 = (a2b)2 + (b2a)2 - 2 x a2b x b2a

= a4b2 + a2b4 - 2a3b3

(iv) We know, (a-b)2 = (a+b) (a - b)

(a – 0.1)(a +0.1) = (a)2– (0.1)2

= a2 – 0.01

(v) We know, (a - b)2 = a2 - b2

(1.5x2 - 0.3y2)(1.5x2 - 0.3y2) = (1.5x2)2 - (0.3y2)2

= 2.25x4 - 0.09y4

13.

Add the expression: 2x2 – 3y2, 5x2 + 6y2, -3x2 – 4y2

Answer»

2x2 – 3y2, 5x2 + 6y2, -3x2 – 4y2

Required sum,

= (2x2 – 3y2) + (5x2 + 6y2) + (-3x2 – 4y2)

Collecting like terms,

= 2x2 + 5x2 – 3x2 – 3y2 + 6y2 – 4y2

Adding like terms,

= (2 + 5 – 3)x2 + (– 3 + 6 – 4)y2

= 4x2 – y2

14.

Add: 5x-8y+2z, 3z-4y-2x, 6y-z-x and 3x-2z-3y

Answer»

Given 5x-8y+2z, 3z-4y-2x, 6y-z-x and 3x-2z-3y

To add the given expression we have arrange them column wise is given below:

5x-8y+2z

-2x-4y+3z

-x+6y-z

5x-9y+2z
15.

Find each of the following products:(i) 5x2 × 4x3(ii) -3a2 × 4b4(iii) (-5xy) × (-3x2yz)(iv) 1/2xy × 2/3x2yz2

Answer»

(i) 5x2 × 4x3

= 20 × x5

= 20x5

(ii)  -3a2 × 4b4

= – 3 × a2 × 4 × b4

= -12a2b4

(iii) (-5xy) × (-3x2yz)

= 15 × x1+2 × y1+1 × z

= 15x3y2z

(iv) 1/2xy × 2/3x2yz2

= 1/2 × 2/3 × x × x2 × y × y × z2

= 1/3 × x1+2 × y1+1 × z2

= 1/3x3y2z2

16.

Find the following products and verify the results for x = -1, y = -2 (x2y – 1) (3 – 2x2y)

Answer»

Now,

 let us simplify the given expression

= (x2y – 1) × (3 – 2x2y)

= x2y (3 – 2x2y) – 1 (3 – 2x2y)

= 3x2y – 2x4y2 – 3 + 2x2y

= 5x2y – 2x4y2 – 3

Let us substitute the given values x = – 1 and y = – 2, then

= (x2y – 1) × (3 – 2x2y)

= [(-1)2 (-2) – 1] × [3 – 2 (-1)2 (-2)

= (-2 – 1) × (3 + 4)

= -3 × 7

= -21

Now,

= 5x2y – 2x4y2 – 3

= [-2 (-1)4 (-2)2 + 5 (-1)2 (2) – 3]

= – 8 – 10 – 3

= -21

∴ The given expression is verified.

17.

Simplify each of the following:(i) (1/3y2 – 4/7y + 11) – (1/7y – 3 + 2y2) – (2/7y – 2/3y2 + 2)(ii) -1/2a2b2c + 1/3ab2c – 1/4abc2 – 1/5cb2a2 + 1/6cb2a – 1/7c2ab + 1/8ca2b

Answer»

(i) (1/3y2 – 4/7y + 11) – (1/7y – 3 + 2y2) – (2/7y – 2/3y2 + 2)

= 1/3y2 – 2y2 – 2/3y2 – 4/7y – 1/7y – 2/7y + 11 + 3 – 2

= (y2 – 6y2 + 2y2)/3 – (4y – y – 2y)/7 + 12

= -3/3y2 – 7/7y + 12

= -y2 – y + 12

(ii) -1/2a2b2c + 1/3ab2c – 1/4abc2 – 1/5cb2a2 + 1/6cb2a – 1/7c2ab + 1/8ca2b

= -1/2a2b2c – 1/5a2b2c + 1/3ab2c + 1/6ab2c – 1/4abc2 – 1/7abc2 + 1/8a2bc

= -7/10a2b2c + 1/2ab2c – 11/28abc2 + 1/8a2bc

18.

Simplify:(i) x2 (x – y) y2 (x + 2y)(ii) (x3 – 2x2 + 5x – 7) (2x – 3)(iii) (5x + 3) (x – 1) (3x – 2)

Answer»

 (i) x2 (x – y) y2 (x + 2y)

= x2 (x – y) y2 (x + 2y)

= x2y2 (x2 + 2xy – xy – 2y2)

= x2y2 (x2 + xy – 2y2)

= x4y2 + x3y3 – 2x2y4

(ii)  (x3 – 2x2 + 5x – 7) (2x – 3)

= (x3 – 2x2 + 5x – 7) (2x – 3)

= 2x4 – 4x3 + 10x2 – 14x – 3x3 + 6x2 – 15x + 21

= 2x4 – 7x3 + 16x2 – 29x + 21

(iii) (5x + 3) (x – 1) (3x – 2)

= (5x + 3) (x – 1) (3x – 2)

= (5x2 – 2x – 3) (3x – 2)

= 15x3 – 6x2 – 9x – 10x2 + 4x + 6

= 15x3 – 16x2 – 5x + 6

19.

Simplify:x2 (x + 2y) (x – 3y)

Answer»

Given,

 x2 (x + 2y) (x – 3y)

= x2 (x2 – 3xy + 2xy – 3y2)

= x2 (x2 – xy – 6y2)

= x4 – x3y – 6x2y2

20.

Simplify:(x2 – 2y2) (x + 4y)x2y2

Answer»

Now,

 let us simplify the given expression

= (x2 – 2y2) (x + 4y)x2y2

= (x3 + 4x2y – 2xy2 – 8y3) × x2y2

= x5y2 + 4x4y3 – 2x3y4 – 8x2y5

21.

Simplify:(x3 – 2x2 + 3x – 4) (x – 1) – (2x – 3) (x2 – x + 1)

Answer»

Now,

= (x3 – 2x2 + 3x – 4) (x – 1) – (2x – 3) (x2 – x + 1)

= x4 – 2x3 + 3x2 – 4x – x3 + 2x2 – 3x + 4 – (2x3 – 2x2 + 2x – 3x2 + 3x – 3)

= x4 – 3x3 + 5x2 – 7x + 4 – 2x3 + 5x2 – 5x + 3

= x4 – 5x3 + 10x2 – 12x + 7

22.

Simplify:(i) (5 – x) (6 – 5x) (2 – x)(ii) (2x2 + 3x – 5) (3x2 – 5x + 4)(iii) (3x – 2) (2x – 3) + (5x – 3) (x + 1)

Answer»

(i) (5 – x) (6 – 5x) (2 – x)

= (5 – x) (6 – 5x) (2 – x)

= (x2 – 7x + 10) (6 – 5x)

= -5x3 + 35x2 – 50x + 6x2 – 42x + 60

= 60 – 92x + 41x2 – 5x3

(ii) (2x2 + 3x – 5) (3x2 – 5x + 4)

= (2x2 + 3x – 5) (3x2 – 5x + 4)

= 6x4 + 9x3 – 15x2 – 10x3 – 15x2 + 25x + 8x2 + 12x – 20

= 6x4 – x3 – 22x2 + 37x – 20

(iii) (3x – 2) (2x – 3) + (5x – 3) (x + 1)

= (3x – 2) (2x – 3) + (5x – 3) (x + 1)

= 6x2 – 9x – 4x + 6 + 5x2 + 5x – 3x – 3

= 11x2 – 11x + 3

23.

Simplify each of the following:(i) x2 – 3x + 5 – 1/2(3x2 – 5x + 7)(ii) [5 – 3x + 2y – (2x – y)] – (3x – 7y + 9)(iii) 11/2x2y – 9/4xy2 + 1/4xy – 1/14y2x + 1/15yx2 + 1/2xy

Answer»

(i) x2 – 3x + 5 – 1/2(3x2 – 5x + 7)

= x2 – 3/2x2 – 3x + 5/2x + 5 – 7/2

= (2x2 – 3x2)/2 – (6x + 5x)/2 + (10-7)/2

= -1/2x2 – 1/2x + 3/2

(ii) [5 – 3x + 2y – (2x – y)] – (3x – 7y + 9)

= 5 – 3x + 2y – 2x + y – 3x + 7y – 9

= – 3x – 2x – 3x + 2y + y + 7y + 5 – 9

= -8x + 10y – 4

(iii) 11/2x2y – 9/4xy2 + 1/4xy – 1/14y2x + 1/15yx2 + 1/2xy

= 11/2x2y + 1/15x2y – 9/4xy2 – 1/14xy2 + 1/4xy + 1/2xy

= (165x2y + 2x2y)/30 + (-126xy2 – 4xy2)/56 + (xy + 2xy)/4

= 167/30x2y – 130/56xy2 + 3/4xy

= 167/30x2y – 65/28xy2 + 3/4xy

24.

Simplify:(i) x(x+4) + 3x (2x2 -1) + 4x2 + 4(ii) a(b-c) – b(c-a) – c(a-b)(iii) a(b-c) +b(c-a) + c(a-b)

Answer»

(i) x(x+4) + 3x(2x2 -1) + 4x2 + 4

= x2 + 4x + 6x3 – 3x + 4x2 + 4

= 6x3 + 5x2 + x + 4

(ii) a(b-c) – b(c-a) – c(a-b)

= ab – ac – bc + ab – ca + bc

= 2ab – 2ac

(iii) a(b-c) +b(c-a) + c(a-b)

= ab – ac + bc – ab + ac – bc

= 0

25.

Simplify: (3x + 2y) (4x + 3y) – (2x – y) (7x – 3y)

Answer»

Now,

= (3x + 2y) (4x + 3y) – (2x – y) (7x – 3y)

= 12x2 + 9xy + 8xy

= 12x2 + 9xy + 8xy + 6y2 – 14x2 + 6xy + 7xy – 3y2

= -2x2 + 3y2 + 30xy

26.

Simplify:(x2 – 3x + 2) (5x – 2) – (3x2 + 4x – 5) (2x – 1)

Answer»

Now,

let us simplify the given expression

= (x2 – 3x + 2) (5x – 2) – (3x2 + 4x – 5) (2x – 1)

= 5x3 – 15x2 + 10x – 2x2 + 6x – 4 – (6x3 + 8x2 – 10x – 3x2 – 4x + 5)

= 5x3 – 6x3 – 15x2 – 2x2 – 5x2 + 16x + 14x – 4 – 5

= – x3 – 22x2 + 30x – 9

27.

Simplify:(5x – 3) (x + 2) – (2x + 5) (4x – 3)

Answer»

Now,

= (5x – 3) (x + 2) – (2x + 5) (4x – 3)

= 5x2 + 10x – 3x – 6 – 8x2 + 6x – 20x + 15

= -3x2 – 7x + 9

28.

Simplify the following using the formula: (a – b) (a + b) = a2 – b2 : (9.8 × 10.2)

Answer»

Given,

9.8 × 10.2

We can express 9.8 as 10 – 0.2 and 10.2 as 10 + 0.2

Using formula (a – b) (a + b) = a2 – b2

We get,

9.8 × 10.2

= (10 – 0.2) (10 + 0.2)

= (10)2 – (0.2)2

= 100 – 0.04

= 99.96

29.

Simplify the following using the identities:(i) ((58)2 – (42)2)/16(ii) 178 × 178 – 22 × 22

Answer»

(i) ((58)2 – (42)2)/16

Using formula (a – b) (a + b) = a2 – b2

We get,

((58)2 – (42)2)/16 

= ((58-42) (58+42)/16)

= ((16) (100)/16)

= 100

(ii) 178 × 178 – 22 × 22

Using formula (a – b) (a + b) = a2 – b2

We get,

178 × 178 – 22 × 22 

= (178)2 – (22)2

= (178-22) (178+22)

= 200 × 156

= 31200

30.

Using the formula for squaring a binomial, evaluate the following:(i) (1001)2(ii) (999)2

Answer»

(i) (1001)2

 Hence we take as , 

1001 as 1000 + 1

So, 

= (1001)2 

= (1000 + 1)2

= (1000)2 + 2 (1000) (1) + 12

= 1000000 + 2000 + 1

= 1002001

(ii) (999)2

Hence we take as ,

999 as 1000 – 1

So, 

= (999)2 

= (1000 – 1)2

= (1000)2 – 2 (1000) (1) + 12

= 1000000 – 2000 + 1

= 998001

31.

 Identify the terms, their coefficients for each of the following expressions:(i) 7x2yz – 5xy(ii) x2 + x + 1(iii) 3x2y2 – 5x2y2z2 + z2(iv) 9 – ab + bc – ca(v) a/2 + b/2 – ab(vi) 0.2x – 0.3xy + 0.5y

Answer»

(i) 7x2yz – 5xy

The given equation has two terms that are:

7x2yz and – 5xy

The coefficient of 7x2yz is 7

The coefficient of – 5xy is – 5

(ii) x2 + x + 1

The given equation has three terms that are:

x2, x, 1

The coefficient of x2 is 1

The coefficient of x is 1

The coefficient of 1 is 1

(iii) 3x2y2 – 5x2y2z2 + z2

The given equation has three terms that are:

3x2y, -5x2y2z2 and z2

The coefficient of 3x2y is 3

The coefficient of -5x2y2z2 is -5

The coefficient of z2 is 1

(iv) 9 – ab + bc – ca

The given equation has four terms that are:

9, -ab, bc, -ca

The coefficient of 9 is 9

The coefficient of -ab is -1

The coefficient of bc is 1

The coefficient of -ca is -1

(v) a/2 + b/2 – ab

The given equation has three terms that are:

a/2, b/2, -ab

The coefficient of a/2 is 1/2

The coefficient of b/2 is 1/2

The coefficient of -ab is -1

(vi) 0.2x – 0.3xy + 0.5y

The given equation has three terms that are:

0.2x, -0.3xy, 0.5y

The coefficient of 0.2x is 0.2

The coefficient of -0.3xy is -0.3

The coefficient of 0.5y is 0.5

32.

Write down the product of -8x2y6 and -20xy verify the product for x = 2.5, y = 1

Answer»

Let us we solve

= -8 × -20 × x2 × x × y6 × y

= 160 × x2+1 × y6+1

= 160x3y7

Now,

 let us verify when, x = 2.5 and y = 1

For 160x3y7

= 160 (2.5)3 × (1)7

= 16 × 15.625

= 250

For -8x2y6 and -20xy

= -8 × 2.52 × 16 × -20 × 1 × 2.5

= 250

Hence, the given expression is verified.

33.

Express each of the following products as a monomials and verify the result in each case for x=1: (x2)3 × (2x) × (-4x) × (5)

Answer»

Given ,

(x2)3 × (2x) × (-4x) × (5)

= 2 × -4 × 5 × x6 × x × x

= -40 × x6+1+1

= -40x8

34.

Classify into monomials, binomials and trinomials(i) 4y – 7z(ii) y2(iii) x + y – xy(iv) 100(v) ab – a – b(vi) 5 – 3t(vii) 4p2q – 4pq2(viii) 7mn(ix) z2 – 3z + 8(x) a2 + b2(xi) z2 + z(xii) 1 + x + x2

Answer»

(i) 4y – 7z

This expression is binomial because it contains two terms. That is 4 y and -7z.

(ii) y2

This is monomial expression because it contains only one term y2.

(iii) x + y – xy

This is trinomial expression because it contains three terms x, y and -xy.

(iv) 100

This is a monomial expression because it contains only one term 100.

(v) ab – a – b

This is trinomial expression because it contains 3 terms ab, -a and -b.

(vi) 5 – 3t

This is binomial expression because it contains 2 terms 5 and -3t.

(vii) 4p2q – 4pq2

This is binomial expression because it contains two terms 4p2q and – 4 pq2

(viii) 7mn

This is monomial expression because it contains only one term 7mn.

(ix) z2 – 3z + 8

This is trinomial expression because it contains three terms z2, -3z and 8.

(x) a2 + b2

This is binomial expression because it contains two terms a2 and b2.

(xi) z2 + z

This is binomial expression because it contains 2 terms z2 and z.

(xii) 1 + x + x2

This is trinomial expression because it contains 3 terms 1, x and x2.

35.

Express each of the following products as a monomials and verify the result in each case for x=1:(i) (3x) × (4x) × (-5x)(ii) (4x2) × (-3x) × (4/5x3)(iii) (5x4) × (x2)3 × (2x)2

Answer»

(i) (3x) × (4x) × (-5x)

= -60 × x1+1+1

= -60x3

(ii) (4x2) × (-3x) × (4/5x3)

= -48/5 × x2+1+3

= -485x6

(iii) (5x4) × (x2)3 × (2x)2

= 5 × 4 × x4 × x6 × x2

= 20 × x4+6+2

= 20x12

36.

Express each of the following products as a monomials and verify the result for x = 1, y = 2:(i) (1/8x2y4) × (1/4x4y2) × (xy) × 5(ii) (2/5a2b) × (-15b2ac) × (-1/2c2)(iii) (-4/7a2b) × (-2/3b2c) × (-7/6c2a)

Answer»

(i) (1/8x2y4) × (1/4x4y2) × (xy) × 5

= 1/8 × 1/4 × 5 × x2 × x4 × x × y4 × y2 × y

= 5/32 × x2+4+1 × y4+2+1

= 5/32x7y7

Now let us substitute when, x = 1 and y = 2

= 5/32 × 16 × 26

= 5/32 × 64

= 5 × 2

= 10

(ii) (2/5a2b) × (-15b2ac) × (-1/2c2)

= 2/5 × -15 × -1/2 × a2 × a × b × b2 × c × c2

= 3 × a2+1 × b1+2 × c1+2

= 3a3b3c3

(iii) (-4/7a2b) × (-2/3b2c) × (-7/6c2a)

= -4/7 × -2/3 × -7/6 × a2 × a × b × b2 × c × c2

= -4/9 × a2+1 × b2+1 × c1+2

= -4/9a3b3c3

37.

Subtract:(i) -5xy from 12xy(ii) 2a2 from -7a2(iii) 2a-b from 3a-5b(iv) 2x3 – 4x2 + 3x + 5 from 4x3 + x2 + x + 6(v) 3/2y3 – 2/7y2 – 5 from 1/3y3 + 5/7y2 + y – 2

Answer»

(i) -5xy from 12xy

= 12xy – (- 5xy)

= 5xy + 12xy

= 17xy

(ii) 2a2 from -7a2

= 2a2 + (-7a2)

= -2a2 + 7a2

= -9a2

(iii) 2a - b from 3a-5b

= -(2a – b)+ (3a – 5b)

= -2a + b+ 3a – 5b

= a – 4b

(iv) 2x3 – 4x2 + 3x + 5 from 4x3 + x2 + x + 6

= – (2x3 – 4x2 + 3x + 5) + (4x3 + x2 + x + 6)

= – 2x3 + 4x2 – 3x – 5 + 4x3 + x2 + x + 6

= 2x3 + 5x2 – 2x + 1

(v) 3/2y3 – 2/7y2 – 5 from 1/3y3 + 5/7y2 + y – 2

= 1/3y3 + 5/7y2 + y – 2 – 2/3y3 + 2/7y2 + 5

= 1/3y3 – 2/3y3 + 5/7y2 + 2/7y2 + y – 2 + 5

= -1/3y3 + 7/7y2 + y + 3

= -1/3y3 + y2 + y + 3

38.

Find each of the following products:(i) (7/9ab2) × (15/7ac2b) × (-3/5a2c)(ii)  (4/3u2vw) × (-5uvw2) × (1/3v2wu)(iii)  (0.5x) × (1/3xy2z4) × (24x2yz)

Answer»

(i) (7/9ab2) × (15/7ac2b) × (-3/5a2c)

= 7/9 × 15/7 × -3/5 × a × a × a2 × b2 × b × c2 × c

= -a4b3c3

(ii) (4/3u2vw) × (-5uvw2) × (1/3v2wu)

= -20/9 × u2+1+1 × v1+1+2 × w1+2+1

= -20/9u4v4w4

(iii) (0.5x) × (1/3xy2z4) × (24x2yz)

= 12/3 × x1+1+2 × y2+1 × z4+1

= 4x4 × y3 × z5

= 4x4y3z5

39.

Multiply the monomial by the binomial and find the value of each for x = -1, y = 0.25 and z = 0.005:(i) 15y2 (2 – 3x)(ii) -3x (y2 + z2)

Answer»

(i) 15y2 (2 – 3x)

= 30y2 – 45xy2

By evaluating the values in the expression x = -1, y = 25/100 and z = 5/1000

= 30 × (25/100)2 – 45 × (-1) × (25/100)2

= 30 (1/16) + 45 (1/16)

= 15/8 + 45/16

= (30+45)/16

= 75/16

(ii) -3x (y2 + z2)

= -3xy2 + -3xz2

By evaluating the values in the expression x = -1, y = 25/100 and z = 5/1000

= -3× (-1) × (25/100)2 – 3 × (-1) × (5/1000)2

= (3×25×25/100×100) + (3×5×5/1000×1000)

= 3/16 + 3/40000

= 39/200

40.

Multiply:(2x2 – 1) by (4x3 + 5x2)

Answer»

let us simplify the given expression

= (2x2 – 1) × (4x3 + 5x2)

= 2x2 (4x3 + 5x2) – 1 (4x3 + 5x2)

= 8x5 + 10x4 – 4x3 – 5x2

41.

Find the values of the following expressions:64x2 + 81y2 + 144xy when x = 11 and y = 4/3

Answer»

Given ,

64x2 + 81y2 + 144xy when x = 11 and y = 4/3

Using formula (a + b)2 = a2 + b2 +2ab

(8x)2 + 2 (8x) (9y) + (9y)2 (8x + 9y)

= [8 (11) + 9 (4/3)]2

= (88 + 12)2

= (100)2

= 10000

42.

Multiply the monomial by the binomial and find the value of each for x = -1, y = 0.25 and z = 0.005:xz (x2 + y2)

Answer»

Let us simplify the given expression

x3z + xzy2

By evaluating the values in the expression x = -1, y = 25/100 and z = 5/1000

= x3z + xzy2

= (-1)3 × (5/1000) + (-1) × (5/1000) × (25/100)2

= -1/200 – 1/16 × 1/200

= -1/200 – 1/3200

= (-16 -1)/3200

= -17/3200