

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
1. |
Consider the integral `I=int_(0)^(2pi)(dx)/(5-2cosx)` Making the substitution `"tan"1/2x=t`, we have `I=int_(0)^(2pi)(dx)/(5-2cosx)=int_(0)^(0)(2dt)/((1+t^(2))[5-2(1-t^(2))//(1+t^(2))])=0` The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake. |
Answer» Correct Answer - 2 Here the mistake lies in the substitution `"tan"1/2x=t`, because `"tan"1/2x` is discontinuous at `x=pi` which is a point in the interval `[0,2pi]`. |
|
2. |
The area bounded by the curves `y=cosx` and `y=sinx` between the ordinates `x=0` and `x=(3pi)/2` isA. `4sqrt(2) + 2`B. `4sqrt(2) +1`C. `4sqrt(2) + 1`D. `4sqrt(2) - 2` |
Answer» Correct Answer - D | |
3. |
Obtain the area enclosed by region bounded by the curves `y = x ln x` and ` y = 2x-2x^(2)`.A. `7//6`B. `7//24`C. `12//7`D. `7//12` |
Answer» Correct Answer - D | |
4. |
If `I_n=int_0^pi e^x(sinx)^n dx ,` then `(I_3)/(I_1)` is equal toA. `3//5`B. `1//5`C. `1`D. `2//5` |
Answer» Correct Answer - A `I_(3)=int_(0)^(pi)e^(x)(sinx)^(3)dx` `=e^(x)(sinx)^(3)|_(0)^(pi)-3int_(0)^(pi)(sinx)^(2)cosx e^(x)dx` `=0-3(sinx)^(2)cosx e^(x)|_(0)^(pi)+3int_(0)^(pi)(2sinx cos x cosx)` `-sin x sin^(2)x)e^(x)dx` `=0+6int_(0)^(pi)sin x cos^(2) xe^(2) dx-3 int_(0)^(pi) sin^(3) xe^(x) dx` `=6int_(0)^(pi) sinx(1-sin^(2)x)e^(x)dx-3int_(0)^(pi)sin^(3)xe^(x)dx` `=6int_(0)^(pi) sinxe^(x)dx-9int_(0)^(pi) sin^(3)x e^(x)dx=6I_(1)-9I_(3)` or `10 I_(3)=6I_(1)` or `(I_(3))/(I_(1))=3/5` |
|
5. |
Prove that:`I_n=int_0^oox^(2n+1)e^-x^2dx=(n !)/2,n in Ndot` |
Answer» `I_(n)=int_(0)^(oo) (x^(2))^(n)x e^(-x^(2))dx` Put `x^(2)=t` or `x dx=dt//2` `:.I_(n)=1/2 int_(0)^(oo) t^(n)e^(-t)dt` `=1/2[[-t^(n)e^(-t)]_(0)^(oo)+nint_(0)^(oo) t^(n-1)e^(-t)dt]` `=1/2[0+n int_(0)^(oo) t^(n-1)e^(-t)dt]` `=n/2int_(0)^(oo) t^(n-1)e^(-t)dt=nI_(n-1)` or `I_(n-1)=(n-1)I_(n-2)` or `I_(n)=n(n-1)(n-2).............1I_(0)` `n!I_(0)=n! 1/2int_(0)^(oo) e^(-t)dt` `=n! 1/2 [-e^(-t)]_(0)^(oo) =(n!)/2` |
|
6. |
If f(x) is continuous and `int_(0)^(9)f(x)dx=4`, then the value of the integral `int_(0)^(3)x.f(x^(2))dx` isA. 2B. 18C. 16D. 4 |
Answer» Correct Answer - A Let `I=int_(0)^(3)x.f(x^(2))dx` Put `x^(2)=t` `rArr" "2x.dx=dt` `rArr" "I=(1)/(2)int_(0)^(9)f(t)dt=(1)/(2).4=2` |
|
7. |
`lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx` equalsA. 2B. 4C. 43469D. 1 |
Answer» Correct Answer - B `underset(trarr0)(lim)int_(0)^(2pi)|(sin(x+t)-sinx)/(t)|dx` `=int_(0)^(2pi)(underset(trarr0)(lim)|(2cos(x+(t)/(2))sin(t)/(2))/(t)|)dt` `=int_(0)^(2pi)|cosx|dx=4` |
|
8. |
Given that `lim_(nrarroo) sum_(r=1)^(n) (log_(e)(n^(2)+r^(2))-2log_(e)n)/n = log_(e)2+pi/2-2`, then evaluate : ` lim_(nrarroo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+2^(2))^(m) "......"(2n^(2))^(m)]^(1//n)`. |
Answer» Correct Answer - `((2sqrt(e^(pi)))/(e^(2)))^(m)` | |
9. |
`lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))` |
Answer» Correct Answer - `pi/2` | |
10. |
`lim_(nrarroo) (((n+1)(n+2)"........"3n)/(n^(2n)))^(1//n)` is equal to :A. `(27)/(e^(2))`B. `(9)/(e^(2))`C. `3 log3-2`D. `(18)/(e^(4))` |
Answer» Correct Answer - A | |
11. |
If `int_0^3 (3ax^2+2bx+c)dx=int_1^3 (3ax^2+2bx+c)dx` where `a,b,c` are constants then `a+b+c=`A. `a+b+c=3`B. `a+b+c=1`C. `a+b+c=0`D. `a+b+c=2` |
Answer» Correct Answer - C `int_(0)^(3)(3ax^(2)+2bx+c)dx=int_(1)^(3)(3ax^(2)+2bx+c)dx` `rArr" "int_(0)^(1)(3ax^(2)+2bx+c)dx+int_(1)^(3)(3ax^(2)+2bx+c)dx` `" "=int_(1)^(3)(3ax^(2)+2bx+c)` `rArr" "int_(0)^(1)(3ax^(2)+2bx+c)dx=0` `rArr" "[(3ax^(3))/(3)+(2bx^(2))/(2)+cx]_(0)^(1)=0` `rArr" "a+b+c=0` |
|
12. |
`lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1))` is equal toA. 1B. 2C. 43467D. 4 |
Answer» Correct Answer - A `underset(nrarroo)(lim)sum_(k=1)^(n)(k^(1//a){n^(a-(1)/(a))+k^(a-(1)/(a))})/(n^(a+1))` `" "=underset(nrarroo)(lim)sum_(k=1)^(n)(1)/(n).{((k)/(n))^(1//a)+((k)/(n))^(a)}` `" "=int_(0)^(1)(x^(1//a)+x^(a))dx` `" "={(x^((1//a)+1))/((1)/(a)+1)+(x^(a+1))/(a+1)}_(0)^(1)` `" "=(a)/(a+1)+(1)/(a+1)=1` |
|
13. |
Prove that:`y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1),w h e r e0lt=xlt=pi/2,`is the equation of a straight line parallel to the x-axis. Find theequation. |
Answer» Here we have to prove that `y=` constant or derivative of `y` w.r.t `x` is zero. ltbr. `y=int_(1/8)^(sin^(2)x) sin^(-1)sqrt(5)dt, dt+int_(1/8)^(cos^(2)x) cos^(-1)sqrt(5)dt`…………..1 `(dy)/(dx)=sin^(-1)sqrt(sin^(2)x)2sinx cosx` `+cos^(-1)sqrt(cos^(2)x)(-2cosxsinx)` `=2x sin x cos x-2x sin x cos x` `=0` for all `x` Therefore the curve in equation 1 is a straight line parallel to the `x`-axis. Now, since `y` is constant it is independent of `x`. So let us select `x=pi//4`.Then `y=int_(1//8)^(1//2)sin^(-1)sqrt(5)dt+int_(1//8)^(1//2)cos^(-1)sqrt(t)dt` `=int_(1//8)^(1//2)(sin^(-1)sqrt(5)+cos^(-1)sqrt(t))dt` `=int_(1//8)^(1//2)pi//2dt` `=(pi)/2[1/2-1/8]` `=(3pi)/16` Therefore, equation of the line is `y=(3pi)/16` |
|
14. |
Let `f: Rvec(0,1)`be a continuous function. Then, which of the following function (s) has(have) the value zero at some point in the interval (0,1)?`e^x-int_0^xf(t)sintdt`(b) `f(x)+int_0^(pi/2)f(t)sintdt``x-int_0^(pi/2-x)f(t)costdt`(d)`x^9-f(x)`A. `e^(x) - underset(0)overset(x)intf(t) sin t dt`B. `f(x) + underset(0)overset(pi/2) intf(t) sin t dt`C. `x - underset(0)overset(pi/2-x)int cos t dt`D. `x^(9) - f(x)` |
Answer» Correct Answer - CD | |
15. |
If `fa n dg`are continuous function on `[0,a]`satisfying `f(x)=f(a-x)a n dg(x)(a-x)=2,`then show that`int_0^af(x)g(x)dx=int_0^af(x)dxdot` |
Answer» Correct Answer - NA `int_(0)^(a)f(x)g(x)dx` `=int_(0)^(a)f(a-x)g(a-x)dx` `=int_(0)^(a)f(x).{2-g(x)}dx` `=2int_(0)^(a)f(x)dx-int_(0)^(a)f(x)g(x)dx` or `2int_(0)^(a)f(x)f(x)dx=2int_(0)^(a)f(x)dx` or `int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx` |
|
16. |
Evaluate : (i) `int_(-oo)^(oo) (dx)/(x^(2)+2x+2)` , (ii) `int_(sqrt(2))^(oo)(dx)/(xsqrt(x^(2)-1))`, (iii) `int_(0)^(4)(x^(2))/(1+x)dx` (iv) `int_(0)^(pi//2) sqrt(costheta)sin^(3)theta` |
Answer» Correct Answer - (i) `pi` , (ii) `pi/4` , (iii) `4 + ln 5` , (iv) `8/21` | |
17. |
Evaluate : (i) `int_(0)^(oo) (dx)/(e^(x)+e^(-x))`, (ii) `int_(0)^(1) (x)/(1+sqrt(x))dx` , (iii) `int_(0)^(pi//2) (sinxcosx)/(cos^(2)x+3cosx+2)` (iv) `int_(0)^(pi/2) (sin2theta d theta)/(sin^(4)theta+cos^(4)theta)`, (v) `int_(0)^(pi//4) (sinx+cosx)/(9+16 sin 2x)dx` |
Answer» Correct Answer - (i) `pi/4` , (ii) `5/3 - 2 ln 2` , (iii) `ln (9/8)` , (iv) `pi/2` , (v) `1/20 ln 3` | |
18. |
The value of `int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s``tane`(b) `tan^(-1)e``tan^(-1)(1/e)`(d) none of theseA. `tane`B. `tan^(-1)e`C. `tan^(-1)(1//e)`D. none of these |
Answer» Correct Answer - B `int_(1)^(e)((tan^(-1)x)/x+(logx)/(1+x^(2)))dx` `=int_(1)^(e)(tan^(-1)x)/x dx+int_(1)^(e)(logx)/(1+x^(2)) dx` `=int_(1)^(e)(tan^(-1)x)/x dx+(logx tan^(-1)x)_(1)^(e)-int_(1)^(e)(tan^(-1)x)/x dx` `=tan^(-1)e` |
|
19. |
`f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt` The range of `f(x)` isA. `[-(sqrt(3))/2,(sqrt(3))/2]`B. `[-(sqrt(5))/3,(sqrt(5))/3]`C. `[-(sqrt(5))/2,(sqrt(5))/2]`D. none of these |
Answer» Correct Answer - B `f(x)=sinx+sin int_(-pi//2)^(pi//2) f(t)dt+cosx int_(-pi//2)^(pi//2) tf(t)dt` `=sinx (1+int_(-pi//2)^(pi//2) f(t)dt)+cosx int_(-pi//2)^(pi//2) tf(t)dt` `=Asinx+Bcosx` Thus, `A=1+int_(-pi//2)^(pi//2) f(t)dt` `=1+int_(-pi//2)^(pi//2) (Asint+Bcost)dt` `=1+2Bint_(0)^(pi//2) cost dt` `=A=1+2B` ............1 `B=int_(-pi//2)^(pi//2) tf(t)dt` `=int_(-pi//2)^(pi//2)t(Asint+Bcost)dt` `=2Aint_(0)^(pi//2) t sin tdt` `=2A[-tcost+sint]_(0)^(pi//2)` `:.B=2A` From equations 1 and 2 we get `A=-1//3, B=-2//3` `:.f(x)=-1/3(sinx+2cosx)` Thus, the range fo `f(x)` is `[-(sqrt(5))/3,(sqrt(5))/3]` `f(x)=-1/2(sinx+2cosx)` `=-(sqrt(5))/3 sin (x+tan^(-1)2)` `=-(sqrt(5))/3cos(x-"tan"^(-1)1/2)` `f(x)` in invertible if `-(pi)/2 le x=tan^(-1)2le(pi)/2` or `-(pi)/2-tan^(-1)2 le xle (pi)/2 -tan^(-1) 2` or `0lex-"tan"^(-1)1/2 le pi` or `"tan"^(-1)1/2 le x le pi+"tan"^(-1)1/2` or `pi le x-"tan"^(-1)1/2le 2pi` or `x epsilon [pi+cot^(-1)2, 2pi +cot^(-1) 2]` `int_(0)^(pi//2) f(x)dx=-1/3int_(0)^(pi//2) (sinx+2cosx)dx` `=-1/3[-cosx+2sinx]_(0)^(pi//2) =-1` |
|
20. |
If `int_(0)^(x^(2)(1+x))f(t)dt = x` then find `f(2)` |
Answer» Correct Answer - `1/5` | |
21. |
`int_(pi//2)^(0)sin^(11)xdx` |
Answer» Correct Answer - `128/693` | |
22. |
Evaluate `int_(0)^(pi)(xdx)/(1+cosalphasinx),0ltalphaltpi`. |
Answer» Correct Answer - `(alphapi)/(sin alpha)` Let `I= int _(0)^(pi) (x)/(1+ cos alpha sin x)dx` . . . (i) `rArr I = int _(0)^(pi) ((pi-x))/(1+cos alpha sin (pi- x))dx` ` rArr I= int _(0)^(pi) ((pi-x))/(1+ cos alpha sin a )dx` . . . (ii) On adding Eqs . (i) and (ii) , we get `rArr 2 I = pi int _(0)^(pi) ("sec "^(2)(x)/(2)dx)/((1+ " tan" ^(2)(x)/(2))+2 cos alpha " tan " (x)/(2))` Put `"tan " (x)/ (2)= t rArr "sec" ^(2)(x)/(2) dx = 2 dt` `rArr 2 I = 2 pi int _(0)^(oo) (dt)/((t + cos alpha )^(2)+sin ^(2)alpha)` `I= (pi)/(sinalpha) [ tan ^(-1) ((t- coas alpha)/( sin alpha))]_(0)^(oo)` ` = (pi)/(sin alpha)[ tan^(-1)(oo)- tan ^(-1) (cot alpha0]` ` = (pi)/(sin alpha)((pi)/(2)-((pi)/(2)- alpha))=(alphapi)/( sinalpha)` `:. I= (alpha pi)/( sin alpha)` |
|
23. |
Show that`int_0^(pi/2)sqrt((sin2theta))sinthetadtheta=pi/4` |
Answer» Let `I=int_(0)^(pi//2)sqrt((sin 2theta))sin theta d theta `……………1 `:.I=int_(0)^(pi//2)sqrt(sin(2(pi/2)-theta))sin(pi/2-theta)d theta` `=int_(0)^(pi//2)sqrt((sin 2theta))cos theta d theta` …………..2 Adding 1 and 2 we get `2I=int_(0)^(pi//2)sqrt((sin 2theta))(sin theta+costheta)d theta` or `I=1/2int_(0)^(pi//2)sqrt(1-(sin theta -cos theta)^(2))(sin theta+cos theta) d theta` `=1/2int_(-1)^(1)sqrt(1-t^(2))dt`[ Let `sin theta -cos theta=t`] `=1/2[1/2 t sqrt((1-t^(2)))+1/2sin^(-1)t]_(-1)^(1)=(pi)/4` |
|
24. |
Prove that`pi/6 |
Answer» Correct Answer - NA Since `0ltx^(3)ltx^(2)`, we have (for `0ltxlt1`) `x^(2)lt x^(2)+x^(3)lt2x^(2)` or `-2x^(2)lt-x^(2)-x^(3)lt-x^(2)` or `4-2x^(2)lt4-x^(2)-x^(3)lt4-x^(2)` or `sqrt(4-2x^(2))ltsqrt(4-x^(2)-x^(3))ltsqrt(4-x^(2))` or `1/(sqrt(4-x^(2)))lt 1/(sqrt(4-x^(2)-x^(3)))lt 1/(sqrt(4-2x^(2)))` or `int_(0)^(1)1/(sqrt(4-x^(2)))dx lt int_(0)^(1)1/(sqrt(4-x^(2)-x^(3)))dx lt int_(0)^(1)1/(sqrt(4-2x^(2)))dx` or `sin^(-1)(x/2)]_(0)^(1)lt int_(0)^(1) (dx)/(sqrt(4-x^(2)-x^(3))) lt 1/(sqrt(2))"sin"^(-1)x/(sqrt(2))]_(0)^(1)` or `(pi)/6 lt int_(0)^(1)(dx)/(sqrt(4-x^(2)-x^(3)))lt (pi)/(4sqrt(2))` |
|
25. |
Evaluate:`int_0^(pi/4)(tan^(-1)((2cos^2theta)/(2-sin2theta)))sec^2thetadthetadot` |
Answer» Given integral is `int_(0)^(pi//4)"tan"^(-1)((2cos^(2)theta)/(2-sin2theta))sec^(2) theta d theta` `=int_(0)^(pi//4)"tan"^(-1)(1/(sec^(2)theta-tan theta))sec^(2) theta d theta` `=int_(0)^(pi//4)"tan"^(-1)(1/(1+tan^(2)theta-tan theta))sec^(2) theta d theta` Put `tan theta=t`. Then `sec^(2)theta d theta=dt` The given integral reduces to `int_(0)^(1)"tan"^(-1)(1/(1+t^(2)-1))dt=int_(0)^(1)"tan"^(-1)((t-(t-1))/(1+t(t-1)))dt` `=int_(0)^(1)"tan"^(-1)t dt -int_(0)^(1)tan^(-1)(t-1)dt` `=int_(0)^(1) tan^(-1)tdt-int_(0)^(1)tan^(-1)((1-t)-1)dt` `=2int_(0)^(1)1tan^(-1)t dt` `=2[t tan^(-1)t]_(0)^(1)-2int_(0)^(1)t/(1+t^(2))dt` (Integrating by parts) `(pi)/2-[In(1+t^(2))]_(0)^(1)=(pi)/2-In2`. |
|
26. |
Let `C_1 and C_2`, be the graph of the functions `y= x^2 and y= 2x, 0 |
Answer» Correct Answer - `f(x) = x^(3) - x^(2)` | |
27. |
The function `f`and `g`are positive and continuous. If `f`is increasing and `g`is decreasing, then`int_0^1f(x)[g(x)-g(1-x)]dx`is always non-positiveis always non-negativecan take positive and negative valuesnone of theseA. is always non-positiveB. is always non-negativeC. can take positive and negative valuesD. none of these |
Answer» Correct Answer - A `I=int_(0)^(1)f(x)[g(x)-g(1-x)]dx` `=-int_(0)^(1)f(1-x)[g(x)-g(1-x)]dx` or `2I=int_(0)^(1)[f(x)-f(1-x)][g(x)-g(1-x)]dx` `=2int_(0)^(1//2)[f(x)-f(1-x)].[g(x)-g(1-x)]dxle0` |
|
28. |
If `I=int_(-20pi)^(20pi)|sinx|[sinx]dx` (where [.] denotes the greatest integer function) then the value of `I` isA. `-40`B. `40`C. `20`D. `-20` |
Answer» Correct Answer - A `int_(-20pi)^(20pi)|sinx|[sinx]dx=int_(0)^(20pi)|sinx|([sinx]+[-sinx])dx` `=-20int_(0)^(pi)(sinx)dx` `=-20(=cosx)_(0)^(pi)` `=20(2)` `=-40` |
|
29. |
`int_(0)^(pi)(x tanx)/(secx+cosx)dx` isA. `(pi^(2))/4`B. `(pi^(2))/2`C. `(3pi^(2))/2`D. `(pi^(2))/3` |
Answer» Correct Answer - A Let `I=int_(0)^(pi)(x tan x)/(sec x +cosx)`……………1 `=int_(0)^(pi)((pi-x)tan(pi-x))/(sec(pi-x)+cos(pi-x))` `=int_(0)^(pi)((pi-x)tanx)/(secx+cosx) dx`…………….2 Adding 1 and 2 gives `2I=pi int_(0)^(pi) (tanx)/(secx+cosx)dx` `=pi int_(0)^(pi)((sinx)/(cosx))/(1/(cosx)+cosx)dx=pi int_(0)^(pi) (sinx)/(1+cos^(2)x) dx` Put `cosx=z`.Therefore `-sinxdx=dz` When `x=0, z=1`, when `x=pi,z=-1` `:.2I=pi int_(1)^(-1)(-dz)/(1+z^(2))=pi int_(-1)^(1)(dz)/(1+z^(2))` `=pi|tan^(-1)z|_(-1)^(1)` `=pi[tan^(-1)1-tan^(-1)(-1)]` `=pi((pi)/4+(pi)/4)=(2pi^(2))/4` or `I=(pi^(2))/4` |
|
30. |
Consider the polynomial f`(x)= 1+2x+3x^2+4x^3`. Let s be the sum of all distinct real roots of `f(x)`and let `t= |s|`.A. `(-(1)/(4),0)`B. `(-11, -(3)/(4))`C. `(-(3)/(4), - (1)/(2))`D. `(0,(1)/(4))` |
Answer» Correct Answer - C | |
31. |
Consider the polynomial f`(x)= 1+2x+3x^2+4x^3`. Let s be the sum of all distinct real roots of `f(x)`and let `t= |s|`.A. `(3/4,3)`B. `(21/64,11/16)`C. `(9,10)`D. `(0,(21)/(64))` |
Answer» Correct Answer - A | |
32. |
Consider the polynomial f`(x)= 1+2x+3x^2+4x^3`. Let s be the sum of all distinct real roots of `f(x)`and let `t= |s|`.A. increasing in `(-t, 1/4)` and decreasing in `(-(1)/(4),t)`B. decreasing in `(-t, -1/4)` and increasing in `(-(1)/(4),t)`C. increasing in `(-t,t)`D. decreasing in `(-t,t)` |
Answer» Correct Answer - B | |
33. |
Let the straight line x = b divide the area enclosed by `y = (1-x)^(2), y = 0` and `x = 0` into two parts `R_(1) (0 le x le b)` and `R_(2) (b le x le 1)` such that `R_(1) - R_(2) = 1/4`. Then b equalsA. `3/4`B. `1/2`C. `1/3`D. `1/4` |
Answer» Correct Answer - B | |
34. |
Let `S`be the area of the region enclosed by `y=e^-x^2,y=0,x=0,a n dx=1.`Then`Sgeq1/e`(b) `Sgeq1=1/e``Slt=1/4(1+1/(sqrt(e)))`(d) `Slt=1/(sqrt(2))+1/(sqrt(e))(1-1/(sqrt(2)))`A. `S ge 1/e`B. `S ge 1 - 1/e`C. `S le 1/4 (1+(1)/(sqrt(e )))`D. `S le 1/(sqrt(2)) + 1/(sqrt(e ))(1-1/(sqrt(2)))` |
Answer» Correct Answer - A::B::D | |
35. |
The area of the region enclosed by the curvesv `y=x,x=e,y=1/x` and the positive X-axis, isA. `1/2` square unitsB. 1 square unitsC. `3/2` square unitsD. `5/2` square units |
Answer» Correct Answer - C | |
36. |
Find area bounded by the curve `y = lnx + tan^(-1)x` and x-axis between ordiantes `x = 1` and `x = 2`. |
Answer» `y = ln x + tan^(-1)x` Domain `x gt 0 , (dy)/(dx) = 1/x + (1)/(1+x^(2)) gt 0` `y` is increasing and `x = 1, y = (pi)/(4) rArr y` is positive in `[1,2]` y in increasing and `x = 1, y = (pi)/(4) rArr y` is positive in `[1,2]` `:.` Required area `= underset(1)overset(2)int(lnx+tan^(-1)) dx = [xlnx - x + x tan^(-1)- 1/2ln(1+x^(2))]_(1)^(2)` `= 2ln2-2+2tan^(-1)2-1/2 ln5-0+1-tan^(-1)1/2 ln 2` `= 5/2 ln 2- 1/2 ln 5+2 tan^(-1) - (pi)/(4) - 1` |
|
37. |
Prove that `int_0^1sqrt((1+x)(1+x^3))dx`cannot exceed `sqrt((15)/8)`. |
Answer» `int_(0)^(1)sqrt((1+x)(1+x^(3)))dx le sqrt((int_(0)^(1)(1+x)dx)(int_(0)^(1)(1+x^(3))dx))` `=sqrt((x+(x^(2))/2)_(0)^(1)(x+(x^(4))/4)_(0)^(1))` `=sqrt((3/2)(5/4))` `=sqrt(15/8)` |
|
38. |
Evaluate : `int_(0)^(a)x^(5//2)sqrt(a-x)dx` |
Answer» `{:("Put" x = a sin^(2)theta,rArr,dx=2asinthetacostheta d theta),("Lower limit" : x = 0, rArr, theta = 0),("Upper limit" x = a , rArr, theta = pi/2):}` `underset(0)overset(pi)intx^(5//2)sqrt(a-x)dx=underset(0)overset(pi/2)int2a^(4)sin^(6)theta d theta = 2a^(4) xx (pi)/(2).((5.31)(1))/(8.64.2) = (5pia^(4))/(128)` |
|
39. |
Estimate the absolute value of the integral `int_(10)^(19)(sinx)/(1+x^8)dx` |
Answer» Since `|sinx|le1,` then `|(sinx)/(1+x^(8))|le1/(|1+x^(8)|)`………………1 But `10lexle19`. So `1+x^(8)gtx^(8)ge10^(8)` or `1/(1+x^(8))lt1/(x^(8))le1/(10^(8))` or `1/(|1+x^(8)|)le1/(10^(8))`…………..2 From 1 and 2 we get `|(sinx)/(1+x^(8))|le10^(-8)` Then `int_(10)^(19)(sinx)/(1+x^(8))dx le(19-10)xx10^(-8)` `=9xx10^(-8)=(10-1)xx10^(8)` `=10^(-7)-10^(-8)lt10^(-7)` Hence `|int_(10)^(19)(sinxdx)/(1+x^(8))|lt10^(-7)`. |
|
40. |
`int_(0)^(pi//4)(2sec^(2)x+x^(3)+2)dx` |
Answer» Correct Answer - `(pi^(4))/(1024) + (pi)/2+2` | |
41. |
`int_(0)^(pi/3)(x)/(1+secx)dx` |
Answer» Correct Answer - `(pi)/(18) - (pi)/(3sqrt(3))+2ln(2/sqrt(3))` | |
42. |
Examples: Find the area of the region bounded by the curve `y^2 = 2y - x` and the y-axis. |
Answer» Correct Answer - `4//3` sq units | |
43. |
Evaluate `Lt_(n to oo)[(1)/(1+n)+(1)/(2+n)+(1)/(3+n)+"...."+(1)/(10n)] ` |
Answer» `underset(nrarr0)(Lt)[(1)/(1+n)+(1)/(2+n)+(1)/(3+n)+"......"+(1)/(10n)] = underset(nrarroo)("Lt")underset(r=1)overset(9n)sum(1)/(r+n)` `= underset(nrarroo)(Lt)underset(r=1)overset(9n)sum(1)/(n) (1)/((r/n)+1) = underset(0)overset(9)int(dx)/(x+1)=[ln(x+1)]_(0)^(9)=ln10` |
|
44. |
Find the area enclosed betweent the curve `y = x^(2)+3, y = 0, x = - 1, x = 2`. |
Answer» Correct Answer - `51/4` sq. unit | |
45. |
Evaluate: `lim_(nrarr0) (((2n)!)/(n!n^(n)))^(1/n)` |
Answer» Let `y= underset(n rarroo)("lim") (((2n)!)/(n!n^(n)))^(1/n)rArr lny=underset(nrarroo)(lim)1/nln(((2n)!)/(n!n^(n)))` `= underset(nrarr0)(lim)1/nln((2n(n-1)(2n-2)"......"(n+1))/(n^(n)))` `= underset(nrarroo)(lim)underset(r=1)overset(n)sum(1)/(n)[ln(1+r//n)]=underset(0)overset(1)intln(1+x)dx = (xln(1+x))_(0)^(1)-underset(0)overset(1)int(x)/(1+x)dx` `= (xln(1+x))_(0)^(1)-(x-ln(1+x))_(0)^(1)=ln2-(1-ln2)=ln4//erArr y = 4//e` |
|
46. |
Draw a graph of the function `f(x) = cos^(-1) (4x^(3)-3x), x in [-1,1]` and find the ara enclosed between the graph of the function and the x-axis varies from 0 to 1. |
Answer» Correct Answer - `3(sqrt(3)-1)` sq. units | |
47. |
Find the area of the region which is inside the parabola `y = - x^(2) + 6x - 5`, out the side the parabola `y = - x^(2) + 4x - 3` and left of the stragiht line `y = 3x-15`. |
Answer» Correct Answer - `73/6` | |
48. |
Find the area bounded by the curves `x = y^(2)` and `x = 3-2y^(2)`. |
Answer» Correct Answer - `4` sq. units | |
49. |
Find the area bounded by the curve `y = x^(2) - 2x + 5`, the tangent to it at the point `(2,5)` and the axes of the coordinates. |
Answer» Correct Answer - `8//3` sq. units | |
50. |
Let ABC be a triangle with vertices `A -=(6,,2sqrt3+1))),B-=(4,2)and C-=(8,2)`. Let R be the region consisting of all those points P inside `DeltaABC` which satisfyd`(P, BC) >= max{d(P,AB);d(P,AC)}`, where d(P, L) denotes the distance of the point from the line L, then |
Answer» Correct Answer - `(4sqrt(3))/(3)` | |