InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Prove that the function `f`given by `f(x)=x-[x]`us ubcreasubg ub `(0,1)dot` |
|
Answer» Here, `f(x) = x-[x]` We know, `x = [x] +{x}`, where `[x]` is the greatest integer function of `x` and `{x}` is the fraction of `x`. `:. x - [x] = {x}`. `:. f(x) = {x}` Let `x_1 = 0.23` and `x_2 = 0.25` Then, `f(x_2) gt f(x_1)` It means, if `x_2 gt x_1` , then, `f(x_2) gt f(x_1)` for `x in (0,1).` Therefore, `f(x)` is an increasing function in `(0,1)`. |
|
| 2. |
Show that `f(x)=cos(2x+pi/4)`is an increasing function on `(3pi//8,7pi//8)dot` |
|
Answer» given that `y= f(x)= cos(2x+pi/4)` `dy/dx> 0 => -2sin(2x+pi/4)> 0` `2sin(2x+ pi/4) <0` `sinubrace(2x+ pi/4) < 0 ` `sin a < 0`so, `pi< a<2pi` so must satisfy `pi< 2x+pi/4<2pi` `(3pi)/4 < 2x < (7pi)/4` `(3pi)/8 < x < (7 pi)/8` answer |
|