 
                 
                InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. | In YDSE, the two slits are separated by 0.1 mm and they are 0.5 m from the screen. The wavelength of light used is 5000 Å. Find the distance between 7th maxima and 11 th mimima on the upper side of screen. | 
| Answer» Given, `d = 0.1 mm =10^-4m, D = 0.5 m and lambda = 5000 Å = 5.0 xx (10^-7)m.` `Delta y = y_11 -y_7 = ((2xx 11xx -1)lambda D)/(2d) -(7lambdaD)/(d)` ` or Delta y = (7lambdaD)/(2d) = ( 7xx 5.0 xx 10^(-7) xx 0.5)/(2 x 10^(-4))` ` = 8.75 xx (10^-3) ` ` = 8.75 mm.` | |
| 52. | In interference, `I_(max)/I_(min) = alpha` , find (a) ` A_(max)/A_(min)` (b)` A_1/A_2` (c)`I_1/I_2` . | 
| Answer» Correct Answer - A::B::C (a) `A_(max)/A_(min) = sqrt (I_(max)/I_(min)) = sqrt alpha` (b) `A_(max)/A_(min) = sqrt alpha = (A_1 +A_2)/(A_1-A_2) = (A_1//A_2 +1)/(A_1//A_2-1)` Solving this equation, we get ` A_1/A_2 = sqrt(alpha+1)/(sqrt alpha-1)` ` (c) I_1/I_2 = (A_1/A_2)^2 = (((sqrt(alpha))+1)/((sqrt alpha)-1)) ^2 ` . | |
| 53. | Two waves of equal frequencies have their amplitudes in the ratio of 3:5. They are superimposed on each other. Calculate the ratio of maximum and minimum intensities of the resultant wave. | 
| Answer» Correct Answer - A Given, `A_1/A_2 = 3/5 ` ` :. sqrt(I_1/I_2) = 3/5` (as `I prop A^2`) Maximum intensity is obtained, where ` cos phi = 1` and `I_(max) = (sqrtI_1 + sqrtI_2)^2` Minimum intensity is found, where ` cos phi = -1` and `I_(min) = (sqrtI_1 - sqrtI_2)^2` Hence, `I_(max)/I_(min) = ((sqrt I_1+sqrtI_2)/(sqrt I_1 -sqrt I_2))^2 = ((sqrt (I_1/I_2)+1)/(sqrt((I_1/I_2))-1))` ` = ((3/5 +1)/(3/5-1))^2 = 64/4 = 16/1`. | |
| 54. | In interference, two individual amplitudes are `A_0` each and the intensity is `I_0` each. Find resultant amplitude and intensity at a point, where: (a) phase difference between two waves is `60^@`. (b) path difference between two waves is `lambda/3`. | 
| Answer» (a) Substituting `phi= 60^@` in the equations, `A = 2A_0 "cos" phi/2` and `I = 4I_0 "cos"^2 phi/2` We get, `A= sqrt (3)A_0` and `I = 3I_0` (b) Given , `Delta x = lambda/3` ` :. Phi or Delta phi = (2pi)/lambda.Delta x ` ` = (2pi)/lambda(lambda/3)= (2pi)/3` or `120^@` Now, substituting `phi=120^@` in the above two equations, we get ` A = A_0` and `I = I_0 ` . | |
| 55. | In interference, `I_(max)/I_(min) = alpha` , find (a) ` A_(max)/A_(min)` (b)` A_1/A_2` (c)`I_1/I_2` . | 
| Answer» Correct Answer - A::B::C (a) `A_(max)/A_(min) = sqrt (I_(max)/I_(min)) = sqrt alpha` (b) `A_(max)/A_(min) = sqrt alpha = (A_1 +A_2)/(A_1-A_2) = (A_1//A_2 +1)/(A_1//A_2-1)` Solving this equation, we get ` A_1/A_2 = sqrt(alpha+1)/(sqrt alpha-1)` ` (c) I_1/I_2 = (A_1/A_2)^2 = (((sqrt(alpha))+1)/((sqrt alpha)-1)) ^2 ` . | |
| 56. | In interference, two individual amplitudes are 5 units and 3 units. Find (a)`A_(max)/A_(min)` (b) ` I_(max)/I_(min)` . | 
| Answer» (a) `A_(max)/A_(min) = (A_1+A_2)/(A_1-A_2)` ` (b) I_(max)/I_(min) = (A_(max)/A_(min))^2` | |
| 57. | Two coherent sources of intensity ratio ` beta^2` interfere. Then, the value of `(I_(max)- I_(min))//(I_(max)+I_(min))` isA. `(1+beta)/(sqrt beta)`B. `(sqrt(1+beta)/beta)`C. `(1+beta)/beta`D. None of these | 
| Answer» Correct Answer - D `I_1/I_2 =beta^2` So let, `I_2 = 1unit, then I_1=beta` `I_(max) = (sqrtI_1+sqrtI_2)^2 = (I+beta)^2` `I_(min) = (sqrtI_1+sqrtI_2)^2 = (I+beta)^2` `= I_(max) - I_(min) =4beta` ` I_(max) + I_(min) = 2(1+beta^2)` :. The asked ratio is `(2beta)/(1+beta^2).` | |
| 58. | Two coherent sources of intensity ratio `alpha` interfere in interference pattern `(I_(max)-I_(min))/(I_(max)+I_(min))` is equal toA. `(2alpha)/(1+alpha)`B. `(2sqrt(alpha))/(a+alpha)`C. `(2alpha)/(1sqrt(alpha))`D. `(1+alpha)/(2alpha)` | 
| Answer» Correct Answer - B `(I_("max")-I_("min"))/(I_("max")+I_("min"))=((a_(1)+a_(2))^(2))/((a_(1)+a_(2))^(2))` `[because I_("max")=(a_(1)+a_(2))^(2), I_("min")=(a_(1)-a_(2))^(2), "where a = amplitude"]` `=(4a_(1)a_(2))/(2(a_(1)^(2)+a_(2)^(2)))=(2a_(1)a_(2))/(a_(1)^(2)+a_(2)^(2))` Now, dividing the numerator and denominator by `a_(1)a_(2)`, we get `(I_("max")-I_("min"))/(I_("max")+I_("min"))=(2)/([(a_(1))/(a_(2))+(a_(2))/(a_(1))])` `=(2)/([sqrt(alpha)+(1)/(sqrt(alpha))])=(2sqrt(alpha))/((alpha+1))` | |