Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Write the range of one branch of \(sin^{–1} x\), other than the principal branch.

Answer»

\([\frac{\pi}2,\frac{3\pi}2]\)

2.

Find the principal value of \(cos^{-1} [cos (– 680°)]\).

Answer»

\(cos^{-1}[cos(-680^o)]\)\(=cos^{-1}[cos(680^o)]\) \([\because cos(-\theta)=cos\,\theta]\)

\(=cos^{-1}[cos\,(720^o-40^o)]\)

\(=cos^{-1}[cos\,(4\pi-40^o)]\)\(=cos^{-1}(cos\,40^o)\)

\(=40^o\) or \(\frac{2\pi}9\)   \([\because40^o=\frac{2\pi}9\in/0,\pi/]\)

3.

Evaluate: \(tan (tan^{–1} (–4))\).

Answer»

\(tan(tan^{-1}(-4))=-4\)

\([\because\,tan(tan^{-1}x)=x\,if\,x\in R\,and\,-4\in R]\)

4.

 Find the value of \(tan^{-1}(\frac xy)-tan^{-1}(\frac{x-y}{x+y})\).

Answer»

\(tan^{-1}(\frac xy)-tan^{-1}(\frac{x-y}{x+y})\)

\(=tan^{-1}\left(\cfrac{\frac xy-\frac{x-y}{x+y}}{1+\frac xy.\frac{x-y}{x+y}}\right)\) \([Here \frac xy.\frac{x-y}{x+y}>-1]\)

\(=tan^{-1}(\frac{x^2+xy-xy+y^2}{y(x+y)}\times\)\(\frac{y(x+y)}{xy+y^2+x^2-xy})\)

\(=tan^{-1}(\frac{x^2+y^2}{x^2+y^2})\)

\(=tan^{-1}(1)=\frac{\pi}4\)

5.

Prove that cos^-1 X = 2sin^-1 √1-x/2 = 2cos^-1 √1+X/2

Answer» RHS

2SIN√1-X/2

2SIN^-1(√1-COSTHETA/2)

=2SIN^-1(SINTHETA/2)

=2(SINTHETA/2)

=2(THETA/2]

LHS=RHS