Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Differentiate function with respect to x,f(x)=`(x^(4)+x^(3)+x^(2)+1)/(x)` |
|
Answer» `d/(dx)(x^(4)+x^(3)+x^(2)+1)/x=d/dx(x^(3)+x^(2)+x+1/x)` `=d/(dx)x^(3) + d/(dx) x^(2)+d/(dx) x+d/(dx)(1/x)` `=3x^(2)+2x+1-1/x^(2)` `=(3x^(4)+2x^(3)+x^(2)-1)/(x^(2))` |
|
| 2. |
Evaluate `lim_(xtoa) (sinx-sina)/(sqrt(x)-sqrt(a))` |
|
Answer» Given, `underset(xtoa)"lim"(sinx-sina)/(sqrt(x)-sqrt(a)) =underset(xto0)"lim"((2cos(x+a))/2sin(x-a)/2)/(sqrt(x)-sqrt(a))` `[therefore sinC-sinD=2cos(C+D)/2.sin(C-D)/2]` `=underset(xto0)"lim"((2cos(x+a))/2sin(x-a)/2(sqrt(x)+sqrt(a)))/((sqrt(x)-sqrt(a))(sqrt(x)+sqrt(a)))` `=underset(xto0)"lim"((2cos(x+a))/2sin(x-a)/2 (sqrt(x)+sqrt(a)))/(x-a)` `=2underset(xto0)"lim"cos(x+a)/(2)(sqrt(x)+sqrt(a)).1/2underset(xto0)"lim"(sin((x-2)/2))/(2((x-a)/2))` `=2underset(xto0)"lim"cos((x+a)/2)(sqrt(x)+sqrt(a)). 1/2underset(xto0)"lim"(sin((x-a)/2))/((x-a)/2)` `=2.cosa/2.sqrt(a).1/2` `[therefore underset(xto0)"lim"(sinx)/x=1]` `=sqrt(a)cosa/2` |
|
| 3. |
Evaluate, `lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2))` , then find the value of k. |
|
Answer» Given, `=underset(xto0)"lim"(x^(3)-k^(3))/(x^(2)-k^(2))` `rArr 4(1)^(4-1)=underset(xtok)"lim"((x^(3)-k^(3))/(x-k))/((x^(2)-k^(2))/(x-k))` `[therefore underset(xtoa)"lim"(x^(n)-a^(n))/(x-a)=na^(n-1)]` `rArr 4=(underset(xtok)"lim"(x^(3)-k^(3))/(x-k))/(underset(xtok)"lim"(x^(2)-k^(2))/(x-k))` `therefore underset(xtoa)"lim"(f(x))/(g(x))` `rArr 4=(3k^(2))/(2k) rArr 4=3/2k` `therefore k=(4 xx2)/(3)=8/3` |
|
| 4. |
Evaluate: `lim_(x->1) (x^15-1)/(x^10-1)` |
|
Answer» numerator,`x^15 - 1` `(x^5)^3 - 1` `= (x^5-1)[(x^5)^2 + x^5 + 1]` `= (x^5 - 1)[x^10 + x^5 +1]` denominator,. `x^10 - 1 = (x^5)^2 - 1` `= (x^5 - 1)(x^5+1)` `lim_(x->1) ((x^5 -1){x^10 + x^5 +1})/((x^5 - 1)(x^5+1))` `lim_(x->1) (x^10 + x^5 +1)/x^5` `= (1^10 + 1^5+ 1)/(1^5 +1)= 3/2` `lim_(x->1) (x^15 - 1)/(x^10 - 1)` `= lim_(x->1) (d/dx(x^15-1))/(d/dx(x^10-1))` `lim_(x->1) (15x^14)/(10 x^9)` `= 15/10 = 3/2` Answer |
|
| 5. |
Find the derivative of the following functions (it is to be understand that a,b,c,d,p,q,r and s are fixed non-zero constants and m and n are integers): `(4x+5sinx)/(3x+7cos x)` |
|
Answer» Let `y=(4x+5 sinx)/(3x+7cos x)` `rArr(dy)/(dx)=(d)/(dx)[((4x+5sinx)/(3x+7cos x)]` `(3x+7cos x)(d)/(dx)(4x+5 sinx)` `=(-(4x+5sinx)(d)/(dx)(3x+7cos x))/((3x+7 cos x)^(2))` `(12x+15x cos x+28 cos x+35cos^(2)x)` `=(-(12x-28xsinx+15sinx-35sin^(2)x)+28x sin x-15 sin x)/((3x+7 cos x)^(2))` `15x cos x +28 cos x +35` `=(15x cos x+28 cos x+35+28xsinx-15sinx)/((3x+7cos x)^(2))` |
|