Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

If `a_(1)` and `a_(2)` are two values of a for which the unit vector `aveci + bvecj +1/2veck` is linearly dependent with `veci+2vecj` and `vecj-2veck`, then `1/a_(1)+1/a_(2)` is equal toA. 1B. `1/8`C. `-16/11`D. `-11/16`

Answer» Correct Answer - C
`ahati+bhatj+1/2hatk=l(hati+2hatj)+m(hatj-2hatk)`
`rArr a=l, b=2l+m` and `m=-1/4`
`ahati+bhatj+1/2hatk` is unit vector
`therefore a^(2)+b^(2)=3/4`
`rArr 5a^(2)-a-11/16=0`
`a_(1)` and `a_(2)` are roots of above equation
`rArr 1/a_(1)+1/a_(2)=(a_(1)+a_(2))/(a_(1)a_(2))=-16/11`
2.

The number of integral values of p for which `(p+1) hati-3hatj+phatk, phati + (p+1)hatj-3hatk` and `-3hati+phatj+(p+1)hatk` are linearly dependent vectors is q

Answer» Correct Answer - B
The vectors are linearly dependent
`rArr |{:(p+1,-3,p),(p,p+1,-3),(-3,p,p+1):}|=0`
`rArr (2p-2)|{:(1,-3,p),(1,p+1,-3),(1,p,p+1):}|=0`
`rArr 2(p-1)|{:(1,-3,p),(0,p+4,-3-p),(0,p+3,1):}|=0`
`rArr 2(p-1)(p+4)+(p+3)^(2)=0`
`rArr (p-1)(p^(2)+7p+13)=0`
Roots of `p^(2)+7p+13=0` are (imaginary)
`therefore p=1`
Only integral value of p is 1.
3.

The number of distinct real values of `lamda` for which the vectors `veca=lamda^(3)hati+hatk, vecb=hati-lamda^(3)hatj` and `vecc=hati+(2lamda-sin lamda)hati-lamdahatk` are coplanar is

Answer» Correct Answer - A
Put `Delta=0`
`rArr lambda^(7)+lambda^(3)-sinlambda=0`
Let `f(lambda)=(7lambda^(6)+3lambda^(2)+2-coslambda) gt 0` in R
`therefore f(lambda)=0` has only one real solution `lambda=0`