Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

14201.

Find the constant term in the expansion of (sqrt(x) -2/x^(2))^(20)

Answer»


ANSWER :`16(""^(20)C_(4)`
14202.

Find the transformed equation of x^(2) + 2 sqrt(3) xy - y^(2) = 2a^(2) when the axes are rotated through an angle 30^(0)

Answer»


ANSWER :`X^(2) - Y^(2) = a^(2)`
14203.

Find the locus of z if omega= (z)/(z- (1)/(3)i), |omega| =1

Answer»


ANSWER :`y= (1)/(6)`, which is a st.line
14204.

Find the number of ways in which (a) a selection ,(b)an arrangement of four letters can be made from the letters of the word 'PROPORTION' ?

Answer»


ANSWER :` 53 , 78`
14205.

If 4sinxcosx=sqrt(3), then x =

Answer»

`npi+(-1)^(N)(PI)/(3)`
`npi+(-1)^(n)(pi)/(6)`
`(npi)/(2)+(-1)^(n)(pi)/(3)`
`(npi)/(2)+(-1)^(n)(pi)/(6)`

Answer :D
14206.

Find the derivative of the function (cos x )/( sin x + cos x)

Answer»


Answer :`(-1)/((sin X + COS 2) ^(2))`
14207.

If A[(a,b,c),(0,c,b),(0,0,b)] then det a =

Answer»

a
0
ABC
`(abc)/(3)`

ANSWER :C
14208.

If (sin^(-1)a)^(2)+(cos^(-1)b)^(2)+(sec^(-1)c)^(2)+(cosec^(-1)d)^(2)=(5pi)^(2)/2, then the value of (sin^(-1)a)^(2)-(cos^(-1)b)^(2)+(sec^(-1)c)^(2)-(cosec^(-1)d)^(2) is equal to

Answer»

`-PI^(2)`
`-pi^(2)/2`
0
`pi^(2)/2`

ANSWER :C
14209.

The distance of pointP (1,2,3) from the coordinate axes are

Answer»


ANSWER :`SQRT(41),sqrt(34),4`
14210.

A functionfis defined by f(x)=2x-5. Write down the values of (i) f(0), (ii) f(7), (iii) f(-3)

Answer»


ANSWER :`-11`
14211.

(1-i)-(-1+i6)=.........

Answer»


ANSWER :`2 - 7I`
14212.

If A = {3, 6, 9, 12, 15, 18, 21}, B = { 4, 8, 12, 16, 20 }, C = { 2, 4, 6, 8, 10, 12, 14, 16 }, D = {5, 10, 15, 20 }, find A – B

Answer»


Answer :`{3, 6, 9, 15, 18, 21}`
14213.

Is 3! + 4! = 7!?

Answer»


ANSWER :30, No
14214.

Evaluate the following limits : Lim_(x to -1) (x^(2)-1)/(x+1)

Answer»


ANSWER :`-2`
14215.

How many 2 digit even numbers can be formed from the digits 1, 2, 3, 4, 5 if the digits can be repeated?

Answer»


ANSWER :10
14216.

Find the maximum value of f(x) = x^(3)(2-x)^(4)

Answer»


ANSWER :`(2^(15)3^(3))/(7^(7))`
14217.

Which of the following identities , wherever defined, hold (s) good ?

Answer»

`COT alpha - TAN alpha = 2 cot 2 alpha`
`tan (45^(0) + alpha) - tan (45^(0) - alpha) = "2 COSEC 2" alpha`
`tan (45^(0) + alpha) + tan (45^(0) - alpha) = 2 SEC 2 alpha`
`tan alpha + cot alpha = 2 tan 2 alpha`

Answer :A::C
14218.

Let f(x) = sinx + ax+b . Then which of the following is/are true ?

Answer»

f(X) =0 has only one REAL ROOT which is positive if `agt1,blt0`.
f(x)=0 has only one REALROOT which is negative if `agt1,BGT0`
f(x)=0 has only one real root which is negative if `alt-1,blt0`.
None of these

Answer :A::B::C
14219.

The medians AD and BE of the triangle with vertices A(0, b), B(0, 0) and C(a, 0) are mutually perpendicular if

Answer»

`B=sqrt(2)a`
`a=sqrt(2)b`
`b=-sqrt(2)a`
`a=-sqrt(b)`

ANSWER :B
14220.

If sin h^(3)x-cos h^(3)x=(ke^(x)-e^(-kx))/(1-k) then k=

Answer»

`-1`
0
`-3`
2

Answer :C
14221.

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)

Answer»


ANSWER :-1
14222.

Find the equation of a circle passing through the point (7,3) having radius 3 units and whose centre lies on the line y = x -1.

Answer»


Answer :CENTRE will be (4,3)
`x^(2) + y^(2) - 8X - 6y + 16 = 0`
14223.

Expand the following expressions : (1-2x+x^(2))^(3)

Answer»


Answer :`1-6X+15X^(2)-0x^(3)+15x^(4)-6x^(5)+X^(6)`
14224.

f (x) = (cos x) ( cos 2x ) …( cos nx) implies f' (x) + sum ^(n) (r tan rx) f (x) =

Answer»

`f(X)`
0
`-f(x)`
`2F(x)`

ANSWER :B
14225.

Find the modulus of the following complex numbers 8-6i^(7)

Answer»


ANSWER :10
14226.

Write the contrapositive and converse of the following statement "x isan even numberimplies that x is divisible by 4"

Answer»


Answer :This STATEMENT can be written as ''If X is an even number, then x is DIVISIBLE by 4''.
The CONTRAPOSITIVE is, If x is not divisible by 4, then x is not an even number.
The converse is, If x is divisible by 4, then x is an even number.
14227.

Find the modulus of 8-6i^(7)?

Answer»


ANSWER :0.1
14228.

Let 'f' be a real valued function defined for all x in Rsuch that for some fixed a gt 0, f(x+a)= 1/2 + sqrt(f(x)-(f(x))^(2)) for all 'x' then the period of f(x) is

Answer»

`a/4`
`a/3`
2a
3a

Answer :C
14229.

Find the derivative of cos x +1 .

Answer»


ANSWER :`-SINX`
14230.

If f and g are two decreasing functions such that fog exists then fog is

Answer»

an INCREASING FUNCTION
a decreasing function
neither increasing nor decreasing function
cannot be determined

Answer :A
14231.

The value of f(0) so that the function f(x)=((27-2x)^(1//3)-3)/(9-3(243+5x)^(1//5))" is continuous at x=0 is "

Answer»


ANSWER :2
14232.

Solve 3x-6=0

Answer»
14233.

lim_(x rarr 1)(x^(1//3) - 1)/(x^(1//6)-1) is equal to

Answer»

1
4
3
2

Answer :D
14234.

Internal bisectors of DeltaABC meet the circumcircle at points D, E and F then Length of side EF is

Answer»

`2R"COS"(A)/(2)`
`2Rsin((A)/(2))`
`2R cos ((C)/(2))`
`2R cos((B)/(2))cos ((C)/(2))`

Answer :A
14235.

Evaluate : lim_(xto0)(sin4x)/(sin2x)

Answer»


ANSWER :2
14236.

Which of the following pairs of functions is/are identical ?

Answer»

`f(x)=TAN(tan^(-1)x)` and `g(x)=cot(cot^(-1)x)`
`f(x)=sin(x)` and `g(x)=sin(sin(x))`
`f(x)=cot^(2) x.cos^(2)x` and `g(x)=cot^(2)x - cos^(2)x`
`f(x)=e^(ln SEC^(-1)x)` and `g(x)=sec^(-1)x`

Answer :A::B::C::D
14237.

(cosh x_(1)+sinhx_(1)) (cosh x_(2)+sinhx_(2))….. (coshx_(n)+sinhx_(n))=

Answer»

`cosh(n(x_(1)+x_(2)+…..+x_(n)) +SINH(n(x_(1)+x_(2)+…..+x_(n)))`
`cosh(x_(1)+x_(2)+…..+x_(n)) +sinh(x_(1)+x_(2)+…..+x_(n))`
`cosh(x_(1)+x_(2)+..+x_(n))-sinh(x_(1)+x_(2)+…..x_(n))`
`cosh(x(x_(1)+x_(2)+…..+x_(n))) -sinh(n(x_(1)+x_(2)+…..x_(n)))`

ANSWER :B
14238.

Find the centre and radius of the circle x^(2) + y^(2) + 8x + 10y - 8 = 0

Answer»


Answer :CENTRE at `(-4,-5)` and RADIUS `7`.
14239.

What is the general value of theta which satisfies both the equations sin theta =- (1)/(2) and cos theta = - (sqrt3)/(2) ?

Answer»


ANSWER :`(7pi)/(6), N in I`
14240.

If the arcs of the same lengths in two circles subtends angles 65^(@)and110^(@) at the centre, find the ratio of their radii.

Answer»


ANSWER :`22:13`
14241.

If the slopes of the lines represented by ax^(2)+2hxy+by^(2)=0 are in the ratio m:n then ((m+n)^(2))/(mn)=

Answer»


ANSWER :`(4H^(2))/(AB)`
14242.

Express each of the following in the form b or bi, where b is a real number (1)/(2) sqrt((-3)/(4))

Answer»


ANSWER :`(1)/(4) SQRT3I`
14243.

Solve the following system of equations by using Cramer,s ruel . 3x+4y+5z=18,2x-y+8z=13,5x-2y+7z=20

Answer»


ANSWER :`z=1`
14244.

The smallest positive value of x (in radians ) satisfying the equation log_(cos x) ((sqrt(3))/(2) sin x) = 2 + log _(sec x) tan x)

Answer»

`(pi)/(12)`
`(pi)/(6)`
`(pi)/(4)`
`(pi)/(3)`

ANSWER :B
14245.

Find the mode for the following distribution.

Answer»


ANSWER :`346.19`
14246.

If x=log[y+sqrt(y^(2)-1)], then y =

Answer»

TANH(x)
COTH(x)
SINH(x)
COSH(x)

Answer :D
14247.

If x, y in R then x+iy is a non-real complex number, if

Answer»

X=0
`y=0`
`x NE 0`
`y NE0`

ANSWER :D
14248.

Minimum value of (Sinx)^(Sinx) is

Answer»

`(e)^((-1)/(e))`
1
`(PI)/(2)`
`(1)/(e)`

Answer :B
14249.

For some integer k, i^(4k)+i^(4k+1)+i^(4k+2)+i^(4k+3) = ..........

Answer»


ANSWER :ZERO
14250.

If a straight line L is perpendicular to the line 4x-2y=1 and forms a triangle of area 4 square units with the coordinate axes, then an equation of the line L is

Answer»

`2x+4y+8=0`
`2x-4y+8=0`
`2x+4y+7=0`
`4x-2y-7=0`

ANSWER :A