Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

3651.

If sec^(4) theta+ sec^(2) theta = 10 +tan^(4)theta + tan^(2) theta, then sin^(2) theta

Answer»

`(2)/(3)`
`(3)/(4)`
`(4)/(5)`
`(5)/(6)`

Answer :C
3652.

Assertion (A) : The equation Sin^(2)x+Cos^(2)y=2Sec^(2)z is only solvable sinx=1 cosy, 1 and secz=1 where x, y, z in R Reason (R) : Maximum value of Sin x and Cosy is 1 and minimum value of sec z is 1

Answer»

Both A and R are true and R is correct explanation of A
Both A and R are true but R is not the correct explanation of A
A is FALSE, R is true
A is true, R is false

Answer :A
3653.

Descibe the sample space :A coinis tossed twice . Ifit results in a head , a die is thrown , otherwise a coin is tossed .

Answer»


Answer :`S=[HH1,HH2,HH3,HH4,HH5,HH6,TH1,TH2,TH3,TH4,TH5,TH6,HTH,HTT,T TH, T T T}`
3654.

sin x = 3/5, x lies in second quadrant.

Answer»


Answer :`COSEC x = 5/3, cos x =-4/5 , SEC x =- 5/4 , tan x=- 3/4, COT x =- 4/3`
3655.

Using binomial theorem, compute (98)^5.

Answer»


ANSWER :9039207968
3656.

If there are (2n + 1) terms in the series 1, 3, 5, 7, 9, ,. .. , prove that the sum of terms at odd places and the sum of terms at even places has the ratio (n + 1)/(n).

Answer»

SOLUTION :N/a
3657.

If the three vectors 2bari -barj +bark, bari+ 2barj -3bark, 3bari + lamdabarj + 5bark are coplanar then lamda =

Answer»

4
`-4`
2
3

Answer :B
3658.

If t_(n) = (1)/(4) (n+2) (n+3) for n=1,2,3….. then (1)/( t_1) + (1)/( t_2) + (1)/( t_3) + ….. + (1)/( t_(2003) )=

Answer»

`( 4006)/( 3006)`
`( 4003)/( 3007)`
`( 4006)/( 3008)`
`( 4006)/( 3009)`

ANSWER :D
3659.

I : If f'(a)gt0 then f is increasing at x=a II : If f is increasing at x=a then f(a) need not to be positive which of the above statements are true

Answer»

only I
only II
both I and II
neither I nor II

Answer :C
3660.

The price relatives and weights of a set of commodities are given below: If the sum of weights is 40 and the index for the set is 122, find the numerical values of x and y.

Answer»


ANSWER :`x=7 and y=8`
3661.

Evaluate the following limits : Lim_(x to 1) (x^(2)-sqrt(x))/(sqrt(x)-1)

Answer»


Answer :` Lim_(X to 1) ((x^(2)-1)-(LOG x)(x-1))/(x-1)`
3662.

The point (2,3) is first reflected in the straight line y=x and then translated through a distance of 2 units along the positive direction X-axis. The coordinates of the transformed point are

Answer»

(5,4)
(2,3)
(5,2)
(4,5)

ANSWER :C
3663.

Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

Answer»


ANSWER :`171`
3664.

The product of perpendiculars from origin to the pair of lines 2x^(2)+5xy+3y^(2)+6x+7y+4=0 is

Answer»

`(2)/(13)`
`(4)/(sqrt26)`
`(1)/(sqrt26)`
`(3)/(sqrt26)`

ANSWER :B
3665.

Discuss the continuity of the functionf(x) = underset(n to oo)(Lt) (log (2 + x) - x^(2n) sin x)/(1 + x^(2n)) " at " x = 1.

Answer»


ANSWER :DISCONTINUOUS at x=1
3666.

If A,B,C and D are angles of a quadrilateral and sinA/2sinB/2sinC/2sinD/2=1/4,prove that A=B=C=D=pi//2

Answer»

Solution :`(2sinA/2sinB/2)(2sinC/2sinD/2)=`
`rArr {cos(A-B)/2 - cos(A+B)/2}{cos(C-D)/2-cos(C+D)/2}=1`
Since, `A+B=2pi-(C+D)`, the above EQUATION becomes,
`rArr {cos(A-B)/2 -cos(A+B)/2}{cos(C-D)/2 + cos(A+B)/2}=1`
`rArr cos^(2)(A+B)/2 -cos(A+B)/2{cos(A-B)/2-cos(C-D)2}+1-cos(A-B)/2cos(C-D)/2=0`
This is a QUADRATIC equation in `cos(A+B)/2` which has real ROOTS.
`rArr {cos(A-B)/2-cos(C-D)/2}^(2)-4{1-cos(A-B)/2.cos(C-D)} ge 0`
`(cos(A-B)/2 +cos(C-D)/2)^(2) ge 4`
`rArr cos(A-B)/2 + cos(C-D)/2 ge`, Now both `cos(A-B)/2` and `cos(C-D)/2 le 1`
`rArr cos(A-B)/2=1` and `cos(C-D)/2=1`
`rArr (A-B)/2 =0 = (C-D)/2`
`A=B, C=D`
Similarly, A=C,B=D `rArr A=B=C=D=pi/2`
3667.

Convert the products into sum or difference. If angles are given in degrees, evaluate from tables. sin ""(A +B)/(2) cos ""(A -B)/(2)

Answer»


ANSWER :`1/2 [SIN A + sin B]`
3668.

If the sum of thereciprocals of the intercepts made by a variable straight line on the axes of coordinates is a constant, then prove that the line always passes through a fixed point.

Answer»


ANSWER :`(1/k,1/k)`
3669.

If bare_(1),bare_(2) and bare_(3) are mutually perpendicular unit vectors then what is the magnitude of bare_(1)+bare_(2) + bare_(3)?

Answer»


ANSWER :`SQRT3`
3670.

The pair of lines 9x^(2)+y^(2)+6xy-9=0 are

Answer»

PARALLEL and COINCIDENT
Parallel but not coincident
Imaginary
Coincident only

ANSWER :B
3671.

Let f(x){:{(2x+a",",x ge -1),(bx^(2)+3,x lt -1):} and g(x)={:{(x+4",",0 le x le 4),(-3x-2,-2 lt x lt 0):} If the domain of g(f(x)) is [-1, 4], then

Answer»

`a =1, B GT 5`
`a=2, b gt 7`
`a=2, b gt 10`
`a=0, b in R`

Answer :D
3672.

If f(x) = |{:(sinx,sina, sin b),(cos x , cos a, cos b),(tanx,tana,tanb):}|,where 0 lt a lt b lt ( pi )/(2), then the equation f'(x) = 0 has, in the interval (a,b)

Answer»

ATLEAST ONE ROOT
ATMOST one root
no root
exactly one root

Answer :A
3673.

Find the derivative of the w.r.to x. x ^(x) + e ^(e ^(x))

Answer»


ANSWER :`X ^(x) (1 + LOG x) + E ^(e^(x)).e ^(x)`
3674.

Find the mean deviation about the mean for the data in

Answer»


ANSWER :157.92
3675.

If f: R to C is defined by f(x) =e^(2ix) AA x in R, then f is (where C denotes the set of all complex numbers)

Answer»

One-one
Onto
One-one and Onto
neither one-one nor Onto

Answer :D
3676.

IfA+ B+C= pi//2 , " then " tan 2A + tan 2B+ tan 2C=

Answer»

SIN2A SIN2B SIN 2C
Cot2A Cot2B Cot2C
Cos2A COS2B Cos2C
Tan2A Tan2B Tan2C

Answer :D
3677.

Let f:R-{(3)/(2) } toR.f(x)= (3x+ 5)/(2x-3)Let f_2 (x)=f(f(x)) , f_3 (x) = f(f_2(x)) ,.....f_x(x)= f(f_(n-1) (x)),"then"f_(2008)(x)+f_(2009)(x)=

Answer»

`(2X^(2)-5)/(2x-3)`
`(2x^(2)-5)/(2x+3)`
`(2x^(2)-5)/(2x+3)`
`(2x^(2)+5)/(2x-3)`

ANSWER :D
3678.

Identify the Quantifiers in the following statements: for all negative integers x,x^(3) is also a negative integers.

Answer»


ANSWER :UNIVERSAL QUANTIFIER is USED
3679.

The radius of a sphere increases at the rate of 0.03 cm/sec. Find the rate of increase in the volume of the sphere when the radius is 5 cm.

Answer»


ANSWER :`15pi`
3680.

Find the value of (a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 - 1))^4 .

Answer»


ANSWER :`2a^8` + `12a^6` - `10a^4` -`4a^2` + 2
3681.

Evaluate the following limits : Lim_( x to 0) ((1+x)^(m)-1)/((1+x)^(n)-1)

Answer»


ANSWER :`m/n`
3682.

The points D, E, F are the midpoints of the sides bar(BC), bar(CA),bar(AB) " of " Delta ABCrespectively. If A=(-2,3,4), D =(1,-4,2),E =(-5,2,-3) then F=

Answer»

(-8,9,-1)
(4,-3,9)
(-2,-5,-5)
(-6,1,3)

ANSWER :B
3683.

Find the sumto n terms series 1^(2) + (1^(2) + 2^(2)) (1^(2) + 2^(2) + 3^(2)) +. . . . .

Answer»


ANSWER :`(N(n+1)^2(n+2))/12`
3684.

If 4 n alpha = pi, then the numerical value of tan alpha tan 2 alpha tan 3 alpha….tan (2n - 1) alpha is equal to

Answer»

-1
0
1
2

Answer :C
3685.

If A -={2x //x in N } B -= {4x//x in N } , then A uuB=

Answer»

`{2,4,6,8,10,12,14,16,18,20….}`
`{4,8,12,16,20….}`
`{2,4,6,8,10,12,14,16,18,20}`
`{4,8,12,16,20}`

ANSWER :A
3686.

Assertion (A): If S be the area of a circle having radius x and A the area of an euilateral triangle having side pix at any isntant, then (dA)/(dt) gt (ds)/(dt) Reason (R ) : A gt S

Answer»

BothA and R are true and R is the correct EXPLANATION of A
Both A and R are true R is not the correct explanation of A
A is true but R is false
A is false but R is true

ANSWER :A
3687.

Find the range of the following functions given by f(x)= |x-3|

Answer»


ANSWER :`[0, OO)`
3688.

If the tangents of the angles A and B of triangle ABC satisfy the equation abx^(2)-c^(2)x+ab=0, then

Answer»

`tanA=a//B`
`tanB=b//a`
`cocS=0`
`SIN^(2)A+sin^(2)B+sin^(2)C=2`

ANSWER :A::B::D
3689.

Find the derivative of the w.r.t.x e ^(x) (x - (1)/(x)) ^(3)

Answer»


ANSWER :`E ^(X)`
3690.

Find the 4^(th)term in the expansion of (x-2y)^12.

Answer»


ANSWER :`1760` `x^9` `Y^3`
3691.

Radian value of 47^@ 30' is ......

Answer»


ANSWER :`(19.pi)/72`
3692.

Write the negative of the proposition : "If a number is divisible by 15, then it is divisible by 5 or 3".

Answer»


Answer :A NUMBER is DIVISIBLE by 15 and it is not divisible by 5 and 3.
3693.

Find the value of tan(Cos^(-1)4/5 + Tan^(-1) 2/3)

Answer»

`17/6`
`7/16`
`16/7`
`6/17`

ANSWER :A
3694.

Find the range and domain of the function defined by f(x)= (1)/(2- sin 3x)

Answer»


ANSWER :`D_(F)= R, R_(f) = [(1)/(3), 1]`
3695.

The range off(x)=[1+sinx]+[2+sin""x/2]+[3+sin""x/2]+...+[n+sin""x/n]AA x in [0, pi], where [.] where denotes the greatest integer function, is

Answer»

`{(N^(2)+n-2)/(2),(n(n+1))/(2)}`
`{(n(n+1))/(2)}`
`{(n^(2)+n-2)/(2), (n(n+1))/(2), (n^(2)+n+2)/(2)}`
`{(n(n+1))/(2),(n^(2)+n+2)/(2)}`

ANSWER :D
3696.

-i

Answer»


SOLUTION :MULTIPLICATIVE INVERSE of `-i=(1)/(-i)`
`""=(1)/(-i)xx(i)/(i)=(i)/(-i^(2))= (i)/(- (-1))=i`
3697.

If 1+sin x sin ^(2)""(x)/(2) = 0 then x is

Answer»

1
2
3
no solution

Answer :D
3698.

ABC is a triangular park with AB=AC=100 meters. A clock tower is situated at the mid point of BC. The angles of elevation of the tower at A and B are cot^(1) (3.2) and "cosec "^(-1)(2.6) respectively. The height of the tower is

Answer»

35 m
25 m
30 m
20 m

Answer :B
3699.

If rr_(2)=r_(1)r_(3)then find B.

Answer»


ANSWER :` 90 ^(@) `
3700.

Equation of the parabola with focus (0,-3) and the directrix y=3 is:(a)x^(2)=-12y(b)x^(2)=12y(c)x^(2)=3y(d)x^(2)=-3y

Answer»

`X^(2)=-12Y`
`x^(2)=12y`
`x^(2)=3Y`
`x^(2)=-3y`

ANSWER :A