InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 3651. |
If sec^(4) theta+ sec^(2) theta = 10 +tan^(4)theta + tan^(2) theta, then sin^(2) theta |
|
Answer» `(2)/(3)` |
|
| 3652. |
Assertion (A) : The equation Sin^(2)x+Cos^(2)y=2Sec^(2)z is only solvable sinx=1 cosy, 1 and secz=1 where x, y, z in R Reason (R) : Maximum value of Sin x and Cosy is 1 and minimum value of sec z is 1 |
|
Answer» Both A and R are true and R is correct explanation of A |
|
| 3653. |
Descibe the sample space :A coinis tossed twice . Ifit results in a head , a die is thrown , otherwise a coin is tossed . |
|
Answer» |
|
| 3654. |
sin x = 3/5, x lies in second quadrant. |
|
Answer» |
|
| 3655. |
Using binomial theorem, compute (98)^5. |
|
Answer» |
|
| 3656. |
If there are (2n + 1) terms in the series 1, 3, 5, 7, 9, ,. .. , prove that the sum of terms at odd places and the sum of terms at even places has the ratio (n + 1)/(n). |
| Answer» SOLUTION :N/a | |
| 3657. |
If the three vectors 2bari -barj +bark, bari+ 2barj -3bark, 3bari + lamdabarj + 5bark are coplanar then lamda = |
|
Answer» 4 |
|
| 3658. |
If t_(n) = (1)/(4) (n+2) (n+3) for n=1,2,3….. then (1)/( t_1) + (1)/( t_2) + (1)/( t_3) + ….. + (1)/( t_(2003) )= |
|
Answer» `( 4006)/( 3006)` |
|
| 3659. |
I : If f'(a)gt0 then f is increasing at x=a II : If f is increasing at x=a then f(a) need not to be positive which of the above statements are true |
|
Answer» only I |
|
| 3660. |
The price relatives and weights of a set of commodities are given below: If the sum of weights is 40 and the index for the set is 122, find the numerical values of x and y. |
|
Answer» |
|
| 3661. |
Evaluate the following limits : Lim_(x to 1) (x^(2)-sqrt(x))/(sqrt(x)-1) |
|
Answer» |
|
| 3662. |
The point (2,3) is first reflected in the straight line y=x and then translated through a distance of 2 units along the positive direction X-axis. The coordinates of the transformed point are |
|
Answer» (5,4) |
|
| 3664. |
The product of perpendiculars from origin to the pair of lines 2x^(2)+5xy+3y^(2)+6x+7y+4=0 is |
|
Answer» `(2)/(13)` |
|
| 3665. |
Discuss the continuity of the functionf(x) = underset(n to oo)(Lt) (log (2 + x) - x^(2n) sin x)/(1 + x^(2n)) " at " x = 1. |
|
Answer» |
|
| 3666. |
If A,B,C and D are angles of a quadrilateral and sinA/2sinB/2sinC/2sinD/2=1/4,prove that A=B=C=D=pi//2 |
|
Answer» Solution :`(2sinA/2sinB/2)(2sinC/2sinD/2)=` `rArr {cos(A-B)/2 - cos(A+B)/2}{cos(C-D)/2-cos(C+D)/2}=1` Since, `A+B=2pi-(C+D)`, the above EQUATION becomes, `rArr {cos(A-B)/2 -cos(A+B)/2}{cos(C-D)/2 + cos(A+B)/2}=1` `rArr cos^(2)(A+B)/2 -cos(A+B)/2{cos(A-B)/2-cos(C-D)2}+1-cos(A-B)/2cos(C-D)/2=0` This is a QUADRATIC equation in `cos(A+B)/2` which has real ROOTS. `rArr {cos(A-B)/2-cos(C-D)/2}^(2)-4{1-cos(A-B)/2.cos(C-D)} ge 0` `(cos(A-B)/2 +cos(C-D)/2)^(2) ge 4` `rArr cos(A-B)/2 + cos(C-D)/2 ge`, Now both `cos(A-B)/2` and `cos(C-D)/2 le 1` `rArr cos(A-B)/2=1` and `cos(C-D)/2=1` `rArr (A-B)/2 =0 = (C-D)/2` `A=B, C=D` Similarly, A=C,B=D `rArr A=B=C=D=pi/2` |
|
| 3667. |
Convert the products into sum or difference. If angles are given in degrees, evaluate from tables. sin ""(A +B)/(2) cos ""(A -B)/(2) |
|
Answer» |
|
| 3668. |
If the sum of thereciprocals of the intercepts made by a variable straight line on the axes of coordinates is a constant, then prove that the line always passes through a fixed point. |
|
Answer» |
|
| 3669. |
If bare_(1),bare_(2) and bare_(3) are mutually perpendicular unit vectors then what is the magnitude of bare_(1)+bare_(2) + bare_(3)? |
|
Answer» |
|
| 3670. |
The pair of lines 9x^(2)+y^(2)+6xy-9=0 are |
|
Answer» PARALLEL and COINCIDENT |
|
| 3671. |
Let f(x){:{(2x+a",",x ge -1),(bx^(2)+3,x lt -1):} and g(x)={:{(x+4",",0 le x le 4),(-3x-2,-2 lt x lt 0):} If the domain of g(f(x)) is [-1, 4], then |
| Answer» Answer :D | |
| 3672. |
If f(x) = |{:(sinx,sina, sin b),(cos x , cos a, cos b),(tanx,tana,tanb):}|,where 0 lt a lt b lt ( pi )/(2), then the equation f'(x) = 0 has, in the interval (a,b) |
| Answer» Answer :A | |
| 3673. |
Find the derivative of the w.r.to x. x ^(x) + e ^(e ^(x)) |
|
Answer» |
|
| 3674. |
Find the mean deviation about the mean for the data in |
|
Answer» |
|
| 3675. |
If f: R to C is defined by f(x) =e^(2ix) AA x in R, then f is (where C denotes the set of all complex numbers) |
|
Answer» One-one |
|
| 3676. |
IfA+ B+C= pi//2 , " then " tan 2A + tan 2B+ tan 2C= |
|
Answer» SIN2A SIN2B SIN 2C |
|
| 3677. |
Let f:R-{(3)/(2) } toR.f(x)= (3x+ 5)/(2x-3)Let f_2 (x)=f(f(x)) , f_3 (x) = f(f_2(x)) ,.....f_x(x)= f(f_(n-1) (x)),"then"f_(2008)(x)+f_(2009)(x)= |
|
Answer» `(2X^(2)-5)/(2x-3)` |
|
| 3678. |
Identify the Quantifiers in the following statements: for all negative integers x,x^(3) is also a negative integers. |
|
Answer» |
|
| 3679. |
The radius of a sphere increases at the rate of 0.03 cm/sec. Find the rate of increase in the volume of the sphere when the radius is 5 cm. |
|
Answer» |
|
| 3680. |
Find the value of (a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 - 1))^4 . |
|
Answer» |
|
| 3681. |
Evaluate the following limits : Lim_( x to 0) ((1+x)^(m)-1)/((1+x)^(n)-1) |
|
Answer» |
|
| 3682. |
The points D, E, F are the midpoints of the sides bar(BC), bar(CA),bar(AB) " of " Delta ABCrespectively. If A=(-2,3,4), D =(1,-4,2),E =(-5,2,-3) then F= |
|
Answer» (-8,9,-1) |
|
| 3683. |
Find the sumto n terms series 1^(2) + (1^(2) + 2^(2)) (1^(2) + 2^(2) + 3^(2)) +. . . . . |
|
Answer» |
|
| 3684. |
If 4 n alpha = pi, then the numerical value of tan alpha tan 2 alpha tan 3 alpha….tan (2n - 1) alpha is equal to |
|
Answer» -1 |
|
| 3685. |
If A -={2x //x in N } B -= {4x//x in N } , then A uuB= |
|
Answer» `{2,4,6,8,10,12,14,16,18,20….}` |
|
| 3686. |
Assertion (A): If S be the area of a circle having radius x and A the area of an euilateral triangle having side pix at any isntant, then (dA)/(dt) gt (ds)/(dt) Reason (R ) : A gt S |
|
Answer» BothA and R are true and R is the correct EXPLANATION of A |
|
| 3688. |
If the tangents of the angles A and B of triangle ABC satisfy the equation abx^(2)-c^(2)x+ab=0, then |
|
Answer» `tanA=a//B` |
|
| 3692. |
Write the negative of the proposition : "If a number is divisible by 15, then it is divisible by 5 or 3". |
|
Answer» |
|
| 3693. |
Find the value of tan(Cos^(-1)4/5 + Tan^(-1) 2/3) |
|
Answer» `17/6` |
|
| 3694. |
Find the range and domain of the function defined by f(x)= (1)/(2- sin 3x) |
|
Answer» |
|
| 3695. |
The range off(x)=[1+sinx]+[2+sin""x/2]+[3+sin""x/2]+...+[n+sin""x/n]AA x in [0, pi], where [.] where denotes the greatest integer function, is |
|
Answer» `{(N^(2)+n-2)/(2),(n(n+1))/(2)}` |
|
| 3696. |
-i |
|
Answer» `""=(1)/(-i)xx(i)/(i)=(i)/(-i^(2))= (i)/(- (-1))=i` |
|
| 3697. |
If 1+sin x sin ^(2)""(x)/(2) = 0 then x is |
|
Answer» 1 |
|
| 3698. |
ABC is a triangular park with AB=AC=100 meters. A clock tower is situated at the mid point of BC. The angles of elevation of the tower at A and B are cot^(1) (3.2) and "cosec "^(-1)(2.6) respectively. The height of the tower is |
|
Answer» 35 m |
|
| 3700. |
Equation of the parabola with focus (0,-3) and the directrix y=3 is:(a)x^(2)=-12y(b)x^(2)=12y(c)x^(2)=3y(d)x^(2)=-3y |
|
Answer» `X^(2)=-12Y` |
|