InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 10551. |
I : theunmberof waysof arranging4 boy and3girlsina rowalwaysbeginswitha boy endswitha girlsis 1440 . II: Thenumberof waysof arranging5 boyand 4girlsin a lineso thattherewill be aboy inthe begingand in theendingand intheendingis 10080 |
|
Answer» Only1 is ture |
|
| 10552. |
How many diagonals can an n-gon (a polygon with n sides ) have ? |
|
Answer» Solution :"A POLYGON of N-sides has n vertices". `:.` "The NUMBER of ST. LINES joining the n-vertices is" `""^nC_2`. `:.` "The number of diagonals is" `""^nC_2-n` `= (n!)/(2!(n-4)!)-n=(n(n-1))/2-n` `= (n^2-n-2n)/2=(n^2-3n)/2=(n(n-3))/2` |
|
| 10553. |
If f(x)=1/9abs({:(cosx, 1, 0), (1, 2cosx, 1), (0, 1, 2cosx):}), " then " (d^(2)f)/(dx^(2))= |
|
Answer» `cos3x` |
|
| 10554. |
If three six faced dice are tossed together, then the probability that exactly two of the three numbers are equal is |
| Answer» Answer :A | |
| 10556. |
Find the maximum area of an isosceles triangle inscribed in the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1with its vertex at one end of the major axis. |
|
Answer» |
|
| 10558. |
Find the coefficient of x^(7) in ((2+3x)^(3))/((1-3x)^(4)). |
|
Answer» |
|
| 10559. |
intsec^11theta tantheta d theta |
|
Answer» SOLUTION :`intsec^11theta TANTHETA d THETA` =`intsec^11theta.sectheta.tantheta d theta` [PUT `sectheta=t` Then `sectheta.tanthetad theta=dt`] =`intt^10dt=1/11t^11+C=1/11sec^11theta+C` |
|
| 10560. |
Find the maximum length of chord of the ellipse(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then findthe locus of midpoint of PQ |
|
Answer» and `Q-=(2sqrt(3)cos((pi)/(2)+theta),2SIN((pi)/(2)+theta))` or `Q-=(-2sqrt(2)sin theta, 2 cos theta)` `(PQ)^(2)=8(cos theta+sin theta)^(2)+4(sin theta-cos theta)^(2)=12+4 sin 2 theta` `:. (PQ)_("max")=4` |
|
| 10561. |
Find the mean deviation about the mean for the data |
|
Answer» |
|
| 10562. |
Choose the correct option regarding energy of empty orbitals. {:(,n,l,m,s),((I),4,0,0,+(1)/(2)),((III),3,1,1,+(1)/(2)):}{:(,n,l,m,s),((II),3,2,0,-(1)/(2)),((IV),3,0,0,-(1)/(2)):} |
|
Answer» `I GT IV` |
|
| 10563. |
Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0 |
|
Answer» |
|
| 10564. |
The range of a random variable X = {1, 2, 3,….} and probabilities are given by P(X = k) = (3^(Ck))/(lfloork) forr k = 1, 2, 3… and C is a constant. Find the value of C. |
|
Answer» |
|
| 10565. |
If (1 -x+ x^2)^n = a_0 +a_1x + a_2x^2+….+a_(2n)x^(2n) then a_0 + a_2 +a_4 + …….+a_(2n) = |
|
Answer» `(3^N +1)/(2)` |
|
| 10566. |
Evalute the following integrals int (7x -4)/((x -1)^(2)(x+2)) dx |
|
Answer» |
|
| 10567. |
i. Solve 5x-3 lt 17 when x is a real number. ii. Mark the solutions on a number line. |
|
Answer» |
|
| 10568. |
Find the realtionship between a and b so that the function f defined by f(x)={(ax+1","," if "xle3),(bx+3","," if "xgt3):} is continuous at x=3 |
|
Answer» |
|
| 10569. |
If f:RrightarrowR is an even function having derivatives of all orders, then an odd function among the following is |
|
Answer» `F''` |
|
| 10570. |
What is the distance (in units) between the two planes 3x+5y+7z=3 and 9x+15y+21z=9: |
|
Answer» 0 |
|
| 10571. |
int sqrt(1 - 2x - x^(2)) dx = |
|
Answer» `SIN^(-1) ((x1)/(sqrt(2))) + ((X + 1)/(2)) sqrt(1 - 2x - x^(2)) `+ c |
|
| 10573. |
If alphaand beta are real them |(alpha+i beta)/(beta+ialpha)|= |
|
Answer» LIES between 0 and 1 |
|
| 10574. |
For integers m and n, both greater than 1, consider the following three statements P : m divides n, Q : m divides n^(2) , R : m is prime then |
|
Answer» <P>`Q ^^ R RARR P` |
|
| 10576. |
If int (7^((1)/(x)))/(x^(2))dx=m*7^((1)/(x)) thenm.... |
|
Answer» `(-1)/(LOG7)` |
|
| 10577. |
int_(0)^(2) f(x) dx = …..., where f(x) =max {x, x^(2)}. |
| Answer» Answer :A | |
| 10578. |
The sumof all 4-digitnumbers that canbe formedusingthedigits2,3,4,5,6withoutrepetitionis |
|
Answer» 533820 |
|
| 10579. |
Matchthe followingcolumnsandchoosethe correctanswer. {:(,"Column I",,,"Column II"),((A), (1 - x) ^(-n),,(1),(x)/(x + 1)),((B),(1-x) ^(-n),,(2), 1- nx + (n(n+1))/(2!) x ^ 2 -... if |x| lt 1),((C), If x gt 1", then " 1 +(1)/(x) +(1)/(x^2) + ..." is",,(3), 1 + nx + (n(n+1))/(2!) x ^ 2+ ... if |x| lt 1),((D), if|x| gt 1", then" 1 - (2 )/(x^2) + (3)/(x^4)- (4)/(x^6) + ...,,(4),(x)/(x-1)),(,,,(5), (x^4)/((x^2 + 1)^2)),(,,,(6),(x^4)/((x^2 -1)^2)):} |
|
Answer» `{:(""(A),(B),(C ),(D)),(1, 3, 4,5 ):}` (b) `(1 + x ) ^ (-n )= 1- nx+ (n (n + 1 ))/(2! )x ^2 - …, if |x|lt1` (c )`1 +(1)/(x)+ (1)/(x^ 2 )+ … = (1)/(1 - (1)/(x)) = (x ) /(x - 1 ) , ifx gt1` ` [ becausea+ ar+ ar ^ 2 + ...=(a )/( 1 - r ), if |r|lt1 ]` (d)`1 -(2)/(x^ 2 )+ (3)/ (x ^ 4)- (4)/(x ^ 6)+ ... = ( 1+ (1)/(x^ 2 ))^ (-2) ` ` = ((x^ 2 )/(1 + x ^ 2)) ^ 2 ` `= (x ^4)/((1 + x ^ 2 )^ 2 ) , if |x| gt 1` |
|
| 10580. |
Let {:f(x)= {(abs(x+1):,xlt1),(1-x:,x le 1):} and {:f(x)= {(x-2:, xlt0),(x+3:, x ge0):}. Then the function h - fg is given by : |
|
Answer» `{:{(x^2+x+2:, xlt-1),(x^2-x-2:,-1le x lt 0),(x^2+ 4x+3:,0lexlt1),(-x^2 -2X +3:, xgt1):}` |
|
| 10581. |
Let S_(1) = x ^(2) - y ^(2) + 2y - sqrt2 -1 and S_(2) = 4x ^(2) + 9y^(2) - 18y -27 be such that S_(1) =0 and S_(2) =0 intersect in four real points Q, R, S and T and let P be the point (2^(3//4),1) show that PQ + PR+PS +PT = 4, 2 sqrt ((36+9 sqrt2)/(13)). |
|
Answer» |
|
| 10582. |
If A, B, C are the sets of all values of x, for which x^(2)-5x-14 is positive, -6x^(2)+2x-3 is negative and 4x-5x^(2)+2 is negative respectively, then A cap B cap C= |
| Answer» Answer :C | |
| 10583. |
A determinant of second order is made with the elements 0 and 1. What is the probability that the determinant made is (i) non-negative (ii) non-zero |
|
Answer» |
|
| 10584. |
Statement-1: For every natural number n ge 2, (1)/(sqrt1)+(1)/(sqrt2)+…..(1)/(sqrtn) gt sqrtn Statement-2: For every natural number n ge 2, sqrt(n(n+1) lt n+1 |
|
Answer» |
|
| 10585. |
If [{:(3,1,-1),(0,1,2):}]then AA ' is a ……… matrix. |
|
Answer» Symmetric |
|
| 10586. |
A pair of perpendicular lines passes through the origin and also through the points of intersection of the curve x^(2) + y^(2) = 4 with x + y = a , where a gt 0 . Then a is equal to |
|
Answer» 2 |
|
| 10587. |
Let n be a positive integer if 1le1gt K len such that (sin^(2)nx)/(sin^(2)x)=a_(@)+sum_(1ge i lt klen) a_(1,k) cos 2 (k-1) for all real number x with x not an integer multiple of pi, then the value of a_(1,k) is |
|
Answer» `=(sin nx-sin(n+1)x)/(sinx)` `C=cos2x+cos4c+………..+cos2nx` `=(sin nx cos (n+1)x)/(sinx)` `((sin^(2)nx)/(sin^(2)nx))^(2)=((sin n XSIN(n+1)x)/(sinx))^(2)+((sin n cos(n+1)x)/(sinx))^(2)=s^(2)+c^(2)` On the other hand `s^(2)+c^(2)=(sin2x+sin4x+...........sin2nx)^(2)+(cos2x+cos4x+.............+cos2nx)^(2)` `=n+sum_(1le 1lt k le n) (2sin 2 xsin 2 kx +2cos 2 x cos 2kx)` `=nn+2 sum_(1le 1 lt k le n)cos2(k-1)x` `IMPLIES a_(1,k)=2` |
|
| 10588. |
A biased die is such that P(4) = (1)/(10) and other scores being equally likely. The die is tossed twice. If X is the 'number of fours seen', then find the variance of the random variable X. |
|
Answer» |
|
| 10589. |
The position vectors of P and Q are respectively a and b. If R is a point on PQ such that PR = 5PQ, then the position vector of R is |
|
Answer» 5b - 4a It means R DIVIDES PQ externally in the ratio 5 : 4. `therefore` Position VECTOR of `R=(5b-4a)/(5-4)=5b-4a` |
|
| 10591. |
Integration by partial fraction : If int sin5x cos 3x dx=-(cos8x)/(16)+A then A=... |
|
Answer» `(sin 2X)/(16)+C` |
|
| 10592. |
Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0) , B (4, 5) and C(6, 3). |
|
Answer» |
|
| 10593. |
Let a, b be roots of x^(2) + 2x + 5 . 71 = 0. "Let" A_(n) be alpha^(n) + beta^(n) , "where " n in N. "If" A_(n+1) + kA_(n-1) - A_(1) A_(n) = 0 then k is equal to ______ |
|
Answer» |
|
| 10594. |
Statement-1: Number of solutions of the equation cos(x-1) = (|x-1|)/(10) are 6. Statement -2: Number of solutions of the equation f(x) = g(x) is equal to the number of points of intersection of graph y = f(x) and y = g(x) |
|
Answer» Statement -1 is true, statement -2 is True and Statement -2 is a CORRECT EXPLANATION for statement -1. |
|
| 10595. |
If "cosec"theta+cottheta=c, then what is costheta equal to ? |
|
Answer» `(c)/(c^(2)+1)` `RARR(1)/(SINTHETA)+(costheta)/(sintheta)=crArr(1+costheta)/(sintheta)=c` `rArr(1+(2" cos"^(2)(theta)/(2)-1))/(2"SIN"(theta)/(2)"cos"(theta)/(2))=crArr(2" cos"^(2)(theta)/(2))/(2"sin"(theta)/(2)"cos"(theta)/(2))=c` `rArr"cot"(theta)/(2)=crArrcostheta=(1-(1)/(c^(2)))/(1+(1)/(c^(2)))=(c^(2)-1)/(c^(2)+1)` `(becausecostheta=(1-TAN^(2)((theta)/(2)))/(1+tan^(2)((theta)/(2))))` `rArr"tan"(theta)/(2)=(1)/(c)` |
|
| 10596. |
A bag contains 5 red and 3 blue balls . If three balls are drawn one by one without replacement from the bag then the probability of drawing exactly two red balls of the three balls , the first ball being red is |
|
Answer» `1/3` |
|
| 10597. |
If the solution of the differential equation (dy)/(dx)-y((x^4+3x^2)/((x^2+1)^2))=(4x+3)e^(x^3/(x^2+1) is in the form y=f(x) (where f(0)=1), then f(A)+f(-1) is |
|
Answer» `2sqrt3` `RARR y e^((-x^3)/(x^2+1))=int(4x+3)dx` `rArr f(x)=y=(2x^2 + 3x +1)e^((x^3)/(x^2+1))` `rArr f(1)=6sqrte` & f(-1)=0 `rArr` f(-1)=0 |
|
| 10598. |
There are 10 pairs of shoes in a cup board from which 4 shoes are picked at random. The probability that there is atleast one pair is |
| Answer» Answer :A | |
| 10599. |
Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connected by (sinx +cosx)^(2) = sin^(2)x + cos^(2)x+2sin cosx rArr u^(2) = 1+2v rArr v=(u^(2)-1)/(2) It follows that any rational integral function of sinx + cosx, and sinx cosx i.e., R(sinx + cosx, sinx cosx), or in our notation R(u,v) can be transformed to R(u, (u^(2)-1)/2). Thus, to solve an equation of the form R(u,v)=0, we form a polynomial equation in u and than look for solutions. The solution of sinx + cosx -2sqrt(2) =0 is completely described by |
|
Answer» `x = 2NPI + pi/4, 2npi - (5PI)/12, 2npi + (11pi)/12, n in Z` |
|
| 10600. |
Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connected by (sinx +cosx)^(2) = sin^(2)x + cos^(2)x+2sin cosx rArr u^(2) = 1+2v rArr v=(u^(2)-1)/(2) It follows that any rational integral function of sinx + cosx, and sinx cosx i.e., R(sinx + cosx, sinx cosx), or in our notation R(u,v) can be transformed to R(u, (u^(2)-1)/2). Thus, to solve an equation of the form R(u,v)=0, we form a polynomial equation in u and than look for solutions. The number of solutions of the equation sin theta + costheta=1 + sintheta costheta in the interval [0,4pi] is |
| Answer» ANSWER :A | |