Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

10551.

I : theunmberof waysof arranging4 boy and3girlsina rowalwaysbeginswitha boy endswitha girlsis 1440 . II: Thenumberof waysof arranging5 boyand 4girlsin a lineso thattherewill be aboy inthe begingand in theendingand intheendingis 10080

Answer»

Only1 is ture
onlyIIis true
BothI andIIaretrue
neither a norIItrue

Answer :A
10552.

How many diagonals can an n-gon (a polygon with n sides ) have ?

Answer»

Solution :"A POLYGON of N-sides has n vertices".
`:.` "The NUMBER of ST. LINES joining the n-vertices is" `""^nC_2`.
`:.` "The number of diagonals is" `""^nC_2-n`
`= (n!)/(2!(n-4)!)-n=(n(n-1))/2-n`
`= (n^2-n-2n)/2=(n^2-3n)/2=(n(n-3))/2`
10553.

If f(x)=1/9abs({:(cosx, 1, 0), (1, 2cosx, 1), (0, 1, 2cosx):}), " then " (d^(2)f)/(dx^(2))=

Answer»

`cos3x`
`cos(pi+3x)`
`SIN3X`
`sin(pi+3x)`

ANSWER :B
10554.

If three six faced dice are tossed together, then the probability that exactly two of the three numbers are equal is

Answer»

`((K-1)(k-2))/(432)`
`(k(k-1))/(432)`
`(k^(2))/(432)`
none

Answer :A
10555.

Find the mean and variance of first n natural numbers .

Answer»


ANSWER :`=(N^(2)-1)/(12)`
10556.

Find the maximum area of an isosceles triangle inscribed in the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1with its vertex at one end of the major axis.

Answer»


ANSWER :`(3sqrt(3))/(4) `AB
10557.

Evaluate int_((-pi)/4)^(pi/4)sin^(2)xdx

Answer»


ANSWER :`(PI)/(4)-(1)/(2)`
10558.

Find the coefficient of x^(7) in ((2+3x)^(3))/((1-3x)^(4)).

Answer»


ANSWER :`8 (""^10C_3 . 3^7) + 36 (""^9C_3 . 3^6)+ 54(""^8C_3 . 3^5) + 27 (""^7C_3 . 3^4)`
10559.

intsec^11theta tantheta d theta

Answer»

SOLUTION :`intsec^11theta TANTHETA d THETA`
=`intsec^11theta.sectheta.tantheta d theta`
[PUT `sectheta=t`
Then `sectheta.tanthetad theta=dt`]
=`intt^10dt=1/11t^11+C=1/11sec^11theta+C`
10560.

Find the maximum length of chord of the ellipse(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then findthe locus of midpoint of PQ

Answer»


Solution :Let `P-=(2sqrt(3)COS theta, 2 sin theta)`
and `Q-=(2sqrt(3)cos((pi)/(2)+theta),2SIN((pi)/(2)+theta))`
or `Q-=(-2sqrt(2)sin theta, 2 cos theta)`
`(PQ)^(2)=8(cos theta+sin theta)^(2)+4(sin theta-cos theta)^(2)=12+4 sin 2 theta`
`:. (PQ)_("max")=4`
10561.

Find the mean deviation about the mean for the data

Answer»


ANSWER :`=157.92`
10562.

Choose the correct option regarding energy of empty orbitals. {:(,n,l,m,s),((I),4,0,0,+(1)/(2)),((III),3,1,1,+(1)/(2)):}{:(,n,l,m,s),((II),3,2,0,-(1)/(2)),((IV),3,0,0,-(1)/(2)):}

Answer»

`I GT IV`
`II lt I`
`II lt III`
`I = III`

ANSWER :A
10563.

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

Answer»


ANSWER :(i) 4 (II) 4 (iii) 2 (IV) 3 (v) 0
10564.

The range of a random variable X = {1, 2, 3,….} and probabilities are given by P(X = k) = (3^(Ck))/(lfloork) forr k = 1, 2, 3… and C is a constant. Find the value of C.

Answer»


ANSWER :`C = ln_(3)(ln_(E)2)`
10565.

If (1 -x+ x^2)^n = a_0 +a_1x + a_2x^2+….+a_(2n)x^(2n) then a_0 + a_2 +a_4 + …….+a_(2n) =

Answer»

`(3^N +1)/(2)`
`(3^(n)-1)/(2)`
`(3^(n+1))/(2)`
`(2^(n-1))/(2)`

ANSWER :A
10566.

Evalute the following integrals int (7x -4)/((x -1)^(2)(x+2)) dx

Answer»


ANSWER :`2log|x-1|-(1)/(x-1)2log|x+2|+c`
10567.

i. Solve 5x-3 lt 17 when x is a real number. ii. Mark the solutions on a number line.

Answer»


ANSWER :i.`X LT 4`
10568.

Find the realtionship between a and b so that the function f defined by f(x)={(ax+1","," if "xle3),(bx+3","," if "xgt3):} is continuous at x=3

Answer»


ANSWER :`a=b+2/3`
10569.

If f:RrightarrowR is an even function having derivatives of all orders, then an odd function among the following is

Answer»

`F''`
`f'''`
`f'+ f''`
`f''+ f'''`

ANSWER :B
10570.

What is the distance (in units) between the two planes 3x+5y+7z=3 and 9x+15y+21z=9:

Answer»

0
3
6/sqrt 83
6

Answer :A
10571.

int sqrt(1 - 2x - x^(2)) dx =

Answer»

`SIN^(-1) ((x1)/(sqrt(2))) + ((X + 1)/(2)) sqrt(1 - 2x - x^(2)) `+ c
`sin^(-1) ((x + 1)/(2)) + ((x + 1)/(2)) sqrt(1 -2x - x^(2)) + c`
`sin^(-1)((x- 1)/(sqrt(2))) + ((x - 1)/(2)) sqrt(1 - 2x - x^(2)) + c `
`sin^(-1)((x- 1)/(2)) + ((x- 1)/(2)) sqrt(1 - 2x - x^(2)) + c `

ANSWER :A
10572.

Evaluate: int(xsin^(-1)x)/sqrt(1-x^(2))dx

Answer»


ANSWER :`x-sqrt(1-x^(2))SIN^(-1)x+c`
10573.

If alphaand beta are real them |(alpha+i beta)/(beta+ialpha)|=

Answer»

LIES between 0 and 1
1
`GT 1`
`0`

ANSWER :B
10574.

For integers m and n, both greater than 1, consider the following three statements P : m divides n, Q : m divides n^(2) , R : m is prime then

Answer»

<P>`Q ^^ R RARR P`
`P ^^ Q rarr R`
`Q rarr R`
`Q rarr P`

ANSWER :A
10575.

Find Lt_(x to a) [(sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x)-2sqrt(x))]

Answer»


ANSWER :B::C
10576.

If int (7^((1)/(x)))/(x^(2))dx=m*7^((1)/(x)) thenm....

Answer»

`(-1)/(LOG7)`
`-log7`
`-1`
`(1)/(7)`

ANSWER :A
10577.

int_(0)^(2) f(x) dx = …..., where f(x) =max {x, x^(2)}.

Answer»

`(8)/(3)`
`(13)/(6)`
`(17)/(6)`
`(19)/(6)`

Answer :A
10578.

The sumof all 4-digitnumbers that canbe formedusingthedigits2,3,4,5,6withoutrepetitionis

Answer»

533820
532280
533280
532380

Answer :C
10579.

Matchthe followingcolumnsandchoosethe correctanswer. {:(,"Column I",,,"Column II"),((A), (1 - x) ^(-n),,(1),(x)/(x + 1)),((B),(1-x) ^(-n),,(2), 1- nx + (n(n+1))/(2!) x ^ 2 -... if |x| lt 1),((C), If x gt 1", then " 1 +(1)/(x) +(1)/(x^2) + ..." is",,(3), 1 + nx + (n(n+1))/(2!) x ^ 2+ ... if |x| lt 1),((D), if|x| gt 1", then" 1 - (2 )/(x^2) + (3)/(x^4)- (4)/(x^6) + ...,,(4),(x)/(x-1)),(,,,(5), (x^4)/((x^2 + 1)^2)),(,,,(6),(x^4)/((x^2 -1)^2)):}

Answer»

`{:(""(A),(B),(C ),(D)),(1, 3, 4,5 ):}`
`{:(""(A), (B), (C ), (D)),(2, 3,4, 5):}`
`{:(""(A), (B), (C ), (D)),(3, 2, 4, 5):}`
`{:(""(A), (B), (C ), (D)),(2, 3, 1, 5):}`

Solution :(a)`(1 -x ) ^(-n )= 1+nx+ (n(n + 1 ))/(2 !)x ^ 2+…, if|x|lt1`
(b) `(1 + x ) ^ (-n )= 1- nx+ (n (n + 1 ))/(2! )x ^2 - …, if |x|lt1`
(c )`1 +(1)/(x)+ (1)/(x^ 2 )+ … = (1)/(1 - (1)/(x)) = (x ) /(x - 1 ) , ifx gt1`
` [ becausea+ ar+ ar ^ 2 + ...=(a )/( 1 - r ), if |r|lt1 ]`
(d)`1 -(2)/(x^ 2 )+ (3)/ (x ^ 4)- (4)/(x ^ 6)+ ... = ( 1+ (1)/(x^ 2 ))^ (-2) `
` = ((x^ 2 )/(1 + x ^ 2)) ^ 2 `
`= (x ^4)/((1 + x ^ 2 )^ 2 ) , if |x| gt 1`
10580.

Let {:f(x)= {(abs(x+1):,xlt1),(1-x:,x le 1):} and {:f(x)= {(x-2:, xlt0),(x+3:, x ge0):}. Then the function h - fg is given by :

Answer»

`{:{(x^2+x+2:, xlt-1),(x^2-x-2:,-1le x lt 0),(x^2+ 4x+3:,0lexlt1),(-x^2 -2X +3:, xgt1):}`
`{:{(-x^2 + x +2 :,x lt-1),(x^2 - x -2 :,-1 LE x LT0),(x^2-4x +3:,0 le xlt 1),(-x^2 - 2x + 3:,x ge1):}`
`{:{(-x^2+x+2:,xlt-1),(x^2-x-2:,-1 le xlt0),(x^2 + 4x +3 :, 0 le x le 1),(-x^2 - 2x +3:, x ge 1):}`
None of these

Answer :C
10581.

Let S_(1) = x ^(2) - y ^(2) + 2y - sqrt2 -1 and S_(2) = 4x ^(2) + 9y^(2) - 18y -27 be such that S_(1) =0 and S_(2) =0 intersect in four real points Q, R, S and T and let P be the point (2^(3//4),1) show that PQ + PR+PS +PT = 4, 2 sqrt ((36+9 sqrt2)/(13)).

Answer»


ANSWER :PQ + PR+PS +PT = 4, 2 sqrt ((36+9 sqrt2)/(13)).`
10582.

If A, B, C are the sets of all values of x, for which x^(2)-5x-14 is positive, -6x^(2)+2x-3 is negative and 4x-5x^(2)+2 is negative respectively, then A cap B cap C=

Answer»

(-2, 7)
`phi`
`((2-sqrt(14))/5, (2+sqrt(14))/5)`
R

Answer :C
10583.

A determinant of second order is made with the elements 0 and 1. What is the probability that the determinant made is (i) non-negative (ii) non-zero

Answer»


Answer :`(i) (13)/(16)` `(ii) (3)/(8)`
10584.

Statement-1: For every natural number n ge 2, (1)/(sqrt1)+(1)/(sqrt2)+…..(1)/(sqrtn) gt sqrtn Statement-2: For every natural number n ge 2, sqrt(n(n+1) lt n+1

Answer»


ANSWER :A
10585.

If [{:(3,1,-1),(0,1,2):}]then AA ' is a ……… matrix.

Answer»

Symmetric
Skew symmetric
Orthogonal
None of these

Answer :A
10586.

A pair of perpendicular lines passes through the origin and also through the points of intersection of the curve x^(2) + y^(2) = 4 with x + y = a , where a gt 0 . Then a is equal to

Answer»

2
3
4
5

Answer :A
10587.

Let n be a positive integer if 1le1gt K len such that (sin^(2)nx)/(sin^(2)x)=a_(@)+sum_(1ge i lt klen) a_(1,k) cos 2 (k-1) for all real number x with x not an integer multiple of pi, then the value of a_(1,k) is

Answer»


SOLUTION :`s=sin2x+sin4x+……+sin2nx`
`=(sin nx-sin(n+1)x)/(sinx)`
`C=cos2x+cos4c+………..+cos2nx`
`=(sin nx cos (n+1)x)/(sinx)`
`((sin^(2)nx)/(sin^(2)nx))^(2)=((sin n XSIN(n+1)x)/(sinx))^(2)+((sin n cos(n+1)x)/(sinx))^(2)=s^(2)+c^(2)`
On the other hand `s^(2)+c^(2)=(sin2x+sin4x+...........sin2nx)^(2)+(cos2x+cos4x+.............+cos2nx)^(2)`
`=n+sum_(1le 1lt k le n) (2sin 2 xsin 2 kx +2cos 2 x cos 2kx)`
`=nn+2 sum_(1le 1 lt k le n)cos2(k-1)x`
`IMPLIES a_(1,k)=2`
10588.

A biased die is such that P(4) = (1)/(10) and other scores being equally likely. The die is tossed twice. If X is the 'number of fours seen', then find the variance of the random variable X.

Answer»


ANSWER :0.18
10589.

The position vectors of P and Q are respectively a and b. If R is a point on PQ such that PR = 5PQ, then the position vector of R is

Answer»

5b - 4a
5b + 4a
4b - 5a
4b + 5a

Solution :Given, PR = 5 PQ
It means R DIVIDES PQ externally in the ratio 5 : 4.
`therefore` Position VECTOR of `R=(5b-4a)/(5-4)=5b-4a`
10590.

int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx=

Answer»

`3/32`
`SQRT(3)/32`
`3/8`
`sqrt(3)/8`

ANSWER :B
10591.

Integration by partial fraction : If int sin5x cos 3x dx=-(cos8x)/(16)+A then A=...

Answer»

`(sin 2X)/(16)+C`
`-(COS2X)/(4)+C`
C
None of these

Answer :B
10592.

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0) , B (4, 5) and C(6, 3).

Answer»


ANSWER :7
10593.

Let a, b be roots of x^(2) + 2x + 5 . 71 = 0. "Let" A_(n) be alpha^(n) + beta^(n) , "where " n in N. "If" A_(n+1) + kA_(n-1) - A_(1) A_(n) = 0 then k is equal to ______

Answer»


ANSWER :`5 . 71`
10594.

Statement-1: Number of solutions of the equation cos(x-1) = (|x-1|)/(10) are 6. Statement -2: Number of solutions of the equation f(x) = g(x) is equal to the number of points of intersection of graph y = f(x) and y = g(x)

Answer»

Statement -1 is true, statement -2 is True and Statement -2 is a CORRECT EXPLANATION for statement -1.
Statement -1 is true, statement -2 is True and Statement -2 is NOT a correct explanation for statement -1.
Statement -1 is True , Statement -2 is FALSE
Statement -1 is False, Statement -2 is True

Answer :A
10595.

If "cosec"theta+cottheta=c, then what is costheta equal to ?

Answer»

`(c)/(c^(2)+1)`
`(c)/(c^(2)-1)`
`(c^(2)-1)/(c^(2)+1)`
None of the above

Solution :Let`"COSEC "theta+cottheta=c`
`RARR(1)/(SINTHETA)+(costheta)/(sintheta)=crArr(1+costheta)/(sintheta)=c`
`rArr(1+(2" cos"^(2)(theta)/(2)-1))/(2"SIN"(theta)/(2)"cos"(theta)/(2))=crArr(2" cos"^(2)(theta)/(2))/(2"sin"(theta)/(2)"cos"(theta)/(2))=c`
`rArr"cot"(theta)/(2)=crArrcostheta=(1-(1)/(c^(2)))/(1+(1)/(c^(2)))=(c^(2)-1)/(c^(2)+1)`
`(becausecostheta=(1-TAN^(2)((theta)/(2)))/(1+tan^(2)((theta)/(2))))`
`rArr"tan"(theta)/(2)=(1)/(c)`
10596.

A bag contains 5 red and 3 blue balls . If three balls are drawn one by one without replacement from the bag then the probability of drawing exactly two red balls of the three balls , the first ball being red is

Answer»

`1/3`
`4/7`
`5/14`
`5/28`

ANSWER :C
10597.

If the solution of the differential equation (dy)/(dx)-y((x^4+3x^2)/((x^2+1)^2))=(4x+3)e^(x^3/(x^2+1) is in the form y=f(x) (where f(0)=1), then f(A)+f(-1) is

Answer»

`2sqrt3`
`3sqrte`
`4sqrte`
`6sqrte`

Solution :I.F.=`e^(-int(x^4+3X^2)/((x^2+1)^2) dx = e^((-x^3)/(x^2+1))`
`RARR y e^((-x^3)/(x^2+1))=int(4x+3)dx`
`rArr f(x)=y=(2x^2 + 3x +1)e^((x^3)/(x^2+1))`
`rArr f(1)=6sqrte` & f(-1)=0
`rArr` f(-1)=0
10598.

There are 10 pairs of shoes in a cup board from which 4 shoes are picked at random. The probability that there is atleast one pair is

Answer»

`(99)/(323)`
`(224)/(323)`
`(2)/(5)`
`(3)/(5)`

Answer :A
10599.

Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connected by (sinx +cosx)^(2) = sin^(2)x + cos^(2)x+2sin cosx rArr u^(2) = 1+2v rArr v=(u^(2)-1)/(2) It follows that any rational integral function of sinx + cosx, and sinx cosx i.e., R(sinx + cosx, sinx cosx), or in our notation R(u,v) can be transformed to R(u, (u^(2)-1)/2). Thus, to solve an equation of the form R(u,v)=0, we form a polynomial equation in u and than look for solutions. The solution of sinx + cosx -2sqrt(2) =0 is completely described by

Answer»

`x = 2NPI + pi/4, 2npi - (5PI)/12, 2npi + (11pi)/12, n in Z`
`x= 2npi-pi/4, 2npi+pi/12, 2npi + (7pi)/12, n in Z`
`x = 2npi+ pi/4, 2npi - pi/12, 2npi - (7pi)/12, n in Z`
`x=2npi - pi/4, 2npi + pi/12, 2npi - (7pi)/12, n in Z`

ANSWER :D
10600.

Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connected by (sinx +cosx)^(2) = sin^(2)x + cos^(2)x+2sin cosx rArr u^(2) = 1+2v rArr v=(u^(2)-1)/(2) It follows that any rational integral function of sinx + cosx, and sinx cosx i.e., R(sinx + cosx, sinx cosx), or in our notation R(u,v) can be transformed to R(u, (u^(2)-1)/2). Thus, to solve an equation of the form R(u,v)=0, we form a polynomial equation in u and than look for solutions. The number of solutions of the equation sin theta + costheta=1 + sintheta costheta in the interval [0,4pi] is

Answer»

FOUR
Six
Eight
FIVE

ANSWER :A