InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 10651. |
The value of a^x-b^y is (wherex=sqrt(log_ab)and y=sqrt(log_ba),agt0,bgt0 and a,bne1) |
|
Answer» 1 |
|
| 10652. |
Let vec(a),vec(b) and vec( c ) are three unit vectors such that vec(a)xx(vec(b)xx vec( c ))=(sqrt(3))/(2)(vec(b)+vec( c )). If the vectors vec(b) and vec( c ) are not parallel then the angle between vec(a) and vec(b) is ………. |
| Answer» Answer :D | |
| 10653. |
Which of the following matrice is invertible? [[1,0,0],[1,1,1],[2,-1,1]] |
|
Answer» SOLUTION :LET A=`[[1,0,0],[1,1,1],[2,-1,1]]` `therefore absA= [[1,0,0],[1,1,1],[2,-1,1]]` =`1[[1,1],[-1,1]]=1+1=2 ne 0` `therefore` A is INVERTIBLE. |
|
| 10654. |
Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b)f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4))) |
|
Answer» `x in [-1,0)cup (0,1]` (b) `f(x)=sin^(-1)(|x-1|-2)` SINCE the domain of `sin^(-1)x` is `[-1,1],f(x)` is defined if `-1 le |x-1|-2 le 1` or `1 le |x-1| le 3` i.e., `-3 le x-1 le -1 " or " 1 lex -1 le 3` i.e., `-2 le x le 0 " or " 2 le x le 4` or domain `=[-2,0]cup [2,4]` (c ) `-1 le 1+3x+2x^(2) le 1` or ` 2x^(2)+3x+1 GE -1` or` 2x^(2) +3x+2 ge 0 "(1)" ` and`2x^(2) +3x le 0 "(2)" ` From equation (2), `2x^(2) +3x le 0" or " 2x(x+(3)/(2)) le 0` or `(-3)/(2) le x le 0 " or " x in [-(3)/(2),0]` In equation (1), we get imaginary root for `2x^(2)+3x+2=0 " and " 2x^(2)+3x+2 ge 0` for all x. THEREFORE, domain of function`=[-(3)/(2),0]` (d) To define `f(x), 9-x^(2) gt 0 " or " -3 lt x lt 3 "(1) " ` `-1 le (x-3) le 1 " or " 2 le x le 4 "(2)" ` From equations (1) and (2), `2 le x lt 3," i.e., " x in [2,3).` (e ) `f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2))` For ` "cos"^(-1)((6-3x)/(4)),-1 le (6-3x)/(4) le 1` or `-4 le 6-3x le 4` or `-10 le -3x le -2` or `2//3 le x le 10//3 "(1)" ` For ` "cosec"^(-1)((x-1)/(2)),(x-1)/(2) le -1 " or "(x-1)/(2) ge 1` i.e., `xle -1 " or " x ge 3 "(2)" ` From equation (1) and (2), ` x in [3,(10)/(3)].` (f)`f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))` `sec^(-1)` function always TAKES positive values which are `[0,pi]-{pi/2}.` Hence, the given function is defined if `(2-|x|)/(4) le -1 " or " (2-|x|)/(4) ge 1` i.e., `|x| ge 6 " or " |x| le -2 i.e.,x in (-oo,-6] cup [6,oo)` |
|
| 10655. |
If sinA=(3)/(5)"where "450^(@)ltAlt540^(@),then "cos"(A)/(2) is equal to |
|
Answer» `(1)/(sqrt(10))` `rArr225^(@)lt(A)/(2)lt270^(@)` `COSA=(-4)/(5)(because A" LIES in Q 2")` ![]() `therefore"cos"^(2)(A)/(2)=(1+cosA)/(2)=(1)/(10)` `RARR"cos"(A)/(2)=(-1)/(sqrt(10))(because(A)/(2)" lies in Q 3")` |
|
| 10656. |
A die is thrown 15 times. Getting a number greater than 5 is a success.Find the mean and variance of the number of successes ? |
| Answer» SOLUTION :Here n=15, and `p=p(a numberlt5)=1/6` and `q=1-p=5/6` `thereforeMean=np=15/6=5/2` VARIANCE=`npq=15,1/6,5/6=25/12` | |
| 10657. |
Whichof the followingstatementsis false ? |
|
Answer» VECTORS `vec(P), vec(A)`and`vec(A) XX vec(B)`are linearlydependent |
|
| 10658. |
Find |vecb| if (veca + vecb).(veca - vecb) =8 and |veca| = 8|vecb| |
|
Answer» |
|
| 10660. |
The value sum_(r=0)^(7)tan^(2)""(pix)/(16) is equal to : |
|
Answer» 28 |
|
| 10661. |
Statement-I : If P,Q,R,S are the ends of latus recta of the hyperbola x^(2)/(16)-y^(2)/9=1 then the area of rectangle of PQRS is 45 square units. Statement -II: The centre of the hyperbola ((x+y+1)^(2))/(3)-((x-y-3)^(2))/(6)=1 lies in second quadrant. Which of above statement is true |
|
Answer» only I |
|
| 10662. |
A,B,C are the centres of the three circles C_1,C_2,C_3such that C_1,C_2touch each other exernally and they both touch C_3 from inside then the radical centre of the circles is for triangle ABC is |
|
Answer» incentre |
|
| 10663. |
If 9 digits (1 to 9) are arranged in the spaces of number 1263 _______6, what is the probability that the number is divisible by 9. |
|
Answer» |
|
| 10664. |
Find the equation of the parabola whose vertex and focus are on the positiveX-axis at a distance of a and a' from the origin respectively. |
|
Answer» |
|
| 10665. |
If p and q are chosen from the set (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), with replacement, the probability that the roots of the equation x^2 + 2px +q = 0 are real is |
|
Answer» 0.84 |
|
| 10666. |
Fundamental theorem of definite integral : int_(0)^(pi/2)(cos2x)/((sinx+cosx)^(2))dx=........... |
|
Answer» `(PI)/(2)` |
|
| 10667. |
An equation a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0 has roots .^(99)C_(0), .^(99)C_(1), C_(99)C_(2), "…..", .^(99)C_(99) The value of (.^(99)C_(0))^(2) + (.^(99)C_(1))^(2) + "….." + (.^(99)C_(99))^(2) is equal to |
|
Answer» `2a_(98) - a_(99)^(2)` or `a_(0) + a_(1)x+a_(2)x^(2) + "...."+a_(99)x^(99) + x^(100)` `= (x-.^(99)C_(0))(x-.^(99)C_(1)) (x-.^(99)C_(2))"....."(x-.^(99)C_(99))` Now, sum ofroot is `.^(99)C_(0)+.^(99)C_(1)+.^(99)C_(2)+"...."+.^(99)C_(99)= - (a_(99))/("COEFFICIENT of" x^(100))` or `a_(99) = - 2^(99)` Also, sum of PRODUCTOF roots taken two at a time is `(a_(99))/("coefficient of" x^(100))` `:. underset(0 le i ltj le 99)(sumsum) .^(99)C_(i).^(99)C_(j) = ((underset(i=0)overset(99)sumunderset(j=0)overset(99)sum.^(99)C_(i).^(99)C_(j))- underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)` `= ((underset(i=0)overset(99)sum.^(99)C_(i)2^(99))-underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)` `= (2^(99)2^(99)-underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)` `= (2^(198) - .^(198)C_(99))/(2)` `(.^(99)C_(0))^(2)+ (.^(99)C_(1))^(2) + "......" + (.^(99)C_(99))^(2)` `= (.^(99)C_(0) + .^(99)C_(1) + .^(99)C_(2) "......." + .^(99)C_(99))^(2) - 2 underset(0lei ltjle99)(sumsum).^(99)C_(i).^(99)C_(j)` `=(-a_(99))^(2) - 2a_(98)` `= a_(99)^(2) - 2a_(98)` |
|
| 10668. |
Find the equation of circles determined by the following conditions. The centre at (1, 4) and passing through (-2, 1). |
|
Answer» Solution :`therefore` PC = `SQRT((1 + 2)^2 + (4 - 1)^2)` = `sqrt(9 + 9) = sqrt(18)` `therefore` Equation of the circle is `(x - H)^2 + (y - k)^2 = a^2` or `(x - 1)^2 + (y - 4)^2 = 18` |
|
| 10669. |
A={1, 2, 3, ..., 9} ............ |
|
Answer» Total arrangement `=9xx8xx7` Required PROBABILITY `=(2xx .^(9)C_(3))/(9xx8xx7)=1/3` |
|
| 10670. |
1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n = |
| Answer» Answer :D | |
| 10671. |
Find the value of (18^(3) + 7^(3) + 3*18*7*25)/((3^(6) + 6*243* + 15*81*4 + 20*27*8 + 15*9 *16*3*32 + 64)) |
|
Answer» |
|
| 10672. |
Probability of an event that 10 persons A_(1), A_(2), ..., A_(10) with ages 70 years above expires in one year is (1)/(2). Then ......... is the probability that person A_(1) expire first in one year. |
|
Answer» `(1)/(10240)` |
|
| 10673. |
P_(1):y^(2)=49x and P_(2):x^(2)=4ay are two parabolas. Equation of a tangent to the parabola P_(1) at a point where it intersects the parabola P_(2) is : |
|
Answer» `2x-y-4a=0` |
|
| 10675. |
For two non-singular matrices A&B, show that adj (AB)=adj(AB)=(adjB)(adjA) |
|
Answer» Solution :We have (AB)(adj AB)=`|AB|I_(n)` `|A|=|B| I_(n)` `A^(-1)(AB)("adj"AB))=|A||B|A^(-1)` `Rightarrow B"adj"(AB)=|B|adjA(THEREFORE A^(-1)(1)/(|A|)adjA)` `Rightarrow B^(-1)B"adj"(AB)=|B|B^(-1)adjA` `Rightarrow B^(-1)B "adj"(AB)|B|B^(-1)"adj"A` `Rightarrow "adj"(AB)=("adj"B)("adjA")` |
|
| 10676. |
If the mean and standard deviation of 20 observations x_1,x_2…….x_20are 50 and 10 respectively , thenunderset( i=1) overset( 10) sum x_i^(2)is equal to |
| Answer» ANSWER :C | |
| 10677. |
The number of ways can five men sit around table so that all shall not have the same neighbours in any two arrangements is |
|
Answer» 11 |
|
| 10679. |
Let C_(1) and C_(2) be the graphs of the functions y=x^(2) and y=2x, respectively, where 0le x le 1." Let "C_(3) be the graph of a function y=f(x), where 0lexle1, f(0)=0. For a point P on C_(1), let the lines through P, parallel to the axes, meet C_(2) and C_(3) at Q and R, respectively (see figure). If for every position of P(on C_(1)), the areas of the shaded regions OPQ and ORP are equal, determine the function f(x). |
|
Answer» <P> Solution :Let P be on `C_(1),y=x^(2) be (t,t^(2))``therefore"y co-ordinate of Q is also "t^(2)` `"Now, Q on y =2x where "y=t^(2)` `therefore""x=t^(2)//2` `therefore""Q((t^(2))/(2),t^(2))` For POINT R, x=t and it is on y=f(x) `therefore""R(t,f(t))` Given that, Area OPQ = Area OPR `rArr""int_(0)^(t^(2))(sqrt(y)-(y)/(2))dy=int_(0)^(t)(x^(2)-f(x))dx` DIFFERENTIATING both sides w.r.t. t, we GET `(sqrt(t^(2))-(t^(2))/(2))(2t)=t^(2)-f(t)` `rArr""f(t)=t^(3)-t^(2)` `rArr""f(x)=x^(3)-x^(2)` |
|
| 10680. |
If I_(1)=int_(0)^(pi//4)x^(40)sin^(10)xdx, I_(2)=int_(0)^(pi//4)x sinxdx, then |
|
Answer» `I_(1) LT I_(2)` |
|
| 10681. |
Find all integers a,b,c such that a^(2) = bc + 1, b^(2) = ca+1. |
|
Answer» |
|
| 10682. |
Determine P(E|F). A die thrown three times, E: '4 appears on the third toss.F:'6 and 5 appears respectively on the two tosses'. |
|
Answer» SOLUTION :Here N (S) = `6^3` =216 E={(1,1,4),(1,2,4),(1,3,4),(1,4,4),(1,5,4),(1,6,4),(2,1,4),(2,2,4),(2,3,4),(2,4,4),(2,5,4),(2,6,4) |
|
| 10683. |
Let a=a_(1)hati+a_(3)hatk, b=b_(1)hati+b_(3)hatk, c=c_(1)hati+c_(2)hatj+c_(3)hatk. If |c|=1 and (axxb)xxc=0, then |(a_(1),a_(2),a_(2)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|is equal to |
|
Answer» 0 `therefore (a xxb)*c = |axxb| ` `RARR |(a_(1),a_(2),a_(3)),(b_(1),b_(2), b_(3)),(c_(1),c_(2),c_(3))|=|axxb|^(2)` |
|
| 10684. |
Find the distance of the point veca from the plane vecr*hatn=d measured parallel to the line vecr=vecb+vec(tc). |
|
Answer» Solution :A line parallel to `VECC` and passing through `A(veca)` is `vecr=veca+lamdavecc` A POINT for some `lamda` SATISFIES plane `""(veca+lamdavecc)*HATN=d` or `""lamda=(vecd-veca*hatn)/(vecc*hatn)` `THEREFORE""` Distance `= (|vecd-hata*hatn|)/(|vecc*hatn|)|vecc|`. |
|
| 10685. |
If y=e^(sin^(-1)x)+e^(cos^(-1)x),0ltxlt1, then |
|
Answer» `(DY)/(dx)=0` |
|
| 10686. |
For all complex numbers z_(1) , z_(1) satisfying |z_(1)| = 12 and |z_(2) - 3 - 4i| = 5 , the minimum value of |z_(1) - z_(2)| is |
|
Answer» 0 |
|
| 10687. |
(i) If f_(n)(x)=(n+1)/((n-1)!)x^(n), then find the value of int_(0)^(1)[sum_(n=1)^(oo)f_(n)(x)]dx. (ii) Evaluate int_(0)^(2)lim_(nrarroo)int_(r=0)^(n)(x^(r+1))/(r!)5^(r)dx. |
|
Answer» |
|
| 10688. |
Let" *" be a binary operation on N given by a"*"b=LCM of a and b. Find20"*"16. |
|
Answer» |
|
| 10689. |
Compute the area of the loop of the curve y^(2) = x^(2) [(1 + x)/(1 –x)]. |
|
Answer» |
|
| 10690. |
If one root is greater then 3 and other root is less than 1 'a' belongs to |
|
Answer» `PHI` |
|
| 10691. |
Find the unit vector in the direction of the vector vecr_1-vecr_2, where vecr_1 = hati+2hatj+hatk and vecr_2 = 3hati+hatj-5hatk. |
|
Answer» Solution :`vecr_1-vecr_2 = hati+2hatj+hatk-3hati-HATJ+5hatk` =`-2hati+hatj+6hatk` `|vecr_1-vecr_2| = SQRT(4+1+36) = sqrt(41)` Unit vector ALONG `vecr_1-vecr_2` = `(-2hati+hatj+6hatk)/sqrt(41) = -2/sqrt(41) hati + 1/sqrt(41) hatj + 6/sqrt(41) hatk`. |
|
| 10692. |
If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in |
|
Answer» A.P. |
|
| 10693. |
For m=n and m, n in N then the value of int_(0)^(pi) cos m x cos n x dx = |
| Answer» Answer :B | |
| 10694. |
Let alpha chord of a circle be that chord of the circle which subtends an angle alpha at the center. If x+y=1 is a chord of x^(2)+y^(2)=1, then alpha is equal to |
|
Answer» `PI //4`
|
|
| 10695. |
The two lines x=ay+b, z=cy+d and x=a'y+b', z=c'y+d will be perpendicular ,if and only if |
|
Answer» aa'+bb'+cc'=0 |
|
| 10696. |
If hat(a), hat(b) and hat(c) are unit vector inclined to each other at an angle of pi/3 then the absolute value of [hat(a)+hat(b)hat(b)+hat(c)hat(c) + hat(a)] equals |
|
Answer» `SQRT2` |
|
| 10697. |
Thereare 12boysto beseatedon2benches, 6on eachlench. Twoofthemdesiretositon thebenchand twootherson theother. Thenumberof waysin whichtheboyscan beseatedon thebenches is |
|
Answer» `300xx8!` |
|
| 10699. |
A dry mixture consists of 3 cups of flour for every 2 cups of sugar. How much sugar is in 4 cups of the mixture? |
|
Answer» |
|
| 10700. |
Find the second order derivatives of the function tan^(-1) x. |
|
Answer» |
|