InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 10701. |
Find two positive number whose sum is 15 and the sum of whose squares is minimum. |
|
Answer» |
|
| 10702. |
For what value of lambda, is the vector 2/3i-lambdaj+2/3k a unit vector ? |
|
Answer» |
|
| 10703. |
If cosh beta= secalphacos theta,sin h beta = " cosec "alphasin theta," then "sinh^(2)beta= |
|
Answer» `sin alpha COS alpha` |
|
| 10704. |
Solve the linear programming problem Maximise Z=x+2y Subject to the constraints: x-yle10, 2x + 3y le20and xge0, yge0 |
|
Answer» |
|
| 10705. |
int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(2)x+cos^(4))x)dx is equal to |
|
Answer» `SEC^(-1)(secx+cosx)+C` |
|
| 10706. |
The value of the series cos 12 ^(@) + cos 84^(@) + cos 132^(@)+cos 156^(@) is, |
|
Answer» `1/2` |
|
| 10707. |
Integrate the functions sinx |
|
Answer» |
|
| 10708. |
If 4 cos^(4) theta , 4 sin^(4) theta + alpah are the roots of the equation x^2 +b(2x+1)=0 and 4cos^(2) theta +beta, 4sin^(2)theta + beta are the roots of the equation x^2 + 4x +2 =0 then b is equal to : |
| Answer» ANSWER :B | |
| 10709. |
If the first derivative of a function vanishes at all points and if f(0) =1, then what is f(x)? |
| Answer» SOLUTION :Given f(x) =0 `IMPLIES` f(x) = C but f(0) =1 `THEREFORE` C=1 The function is f(x) =1. | |
| 10710. |
An equation (dy)/(dx) + p(x).y = q(x) is called |
|
Answer» VARIABLE SEPARABLE |
|
| 10711. |
For non zero vectors veca,vecb, vecc (veca xx vecb). Vecc= |veca| |vecb||vecc| holds iff: |
|
Answer» `VECA. VECB=0, vecb. Vecc=0, vecc.vecane0` |
|
| 10712. |
Let a, b and c be distinct non-negative numbers. If the vectors ahati+ahatj+c hatk, hati+hatk and chati+chatj+bhatk lie in a plane, then c is |
|
Answer» the HARMONIC MEAN of a and b `:. |{:(a,a,c),(1,0,1),(c,c,b):}| = 0` On applying `C_(1) rarr C_(1) - C_(2)` , we get `|{:( 0,a,c),(1,0,1),(0,c,b):}| = 0` `rArr -1(ab - c^(2)) = 0 rArr c^(2) = ab` Hence,c is GM of a and b. |
|
| 10714. |
Let G be the centroid of the DeltaABC, whose sides are of lengths a,b,c. If P be a point in the plane of triangleABC, such that PA=1,PB=3, PC=4 and PG=2, then the value of a^(2)+b^(2)+c^(2) is |
|
Answer» 42 `=3(|veca|^(2)+|vecb|^(2)+|vecc|^(2))` So, `9(GP)^(2)+(AB)^(2)+(BC)^(2)+(CA)^(2)` `=3(PA)^(2)+(PB)^(2)+(PC)^(2)` `RARR 9 xx 2^(2)(a^(2)+b^(2)+c^(2))=3(1^(2)+3^(2)+4^(2))` `rArr a^(2)+b^(2)+c^(2)=42` |
|
| 10715. |
A: There is no triangle ABC for A= Tan^-1 2, B= Tan^-1 3 R: IF x gt 0, y gt 0 and xy gt 1 then Tan^-1x+Tan^-1y=pi+Tan^-1((x+y)/(1-xy)) |
|
Answer» A is TRUE, R is true and R is CORRECT EXPLANATION of A |
|
| 10716. |
If sin^(-1) x=y,thenfind the range of y |
|
Answer» `0LE ylepi` |
|
| 10717. |
A bag contains 4 red, 3 black and 2 white balls. One by one three balls are drawn without replacement. Find the probability of selecting atleast one white ball. |
|
Answer» |
|
| 10718. |
If a, b, c are non-zero, non-collinear vectors such that a vectors such that a vector p=abcos(2pi-(a,c))c and aq=ac cos(pi-(a, c)) then b+q is |
|
Answer» parallel to a |
|
| 10719. |
Find the area of the region enclosed between the circles x^(2)+y^(2)=4 and (x-2)^(2)+y^(2)=4 |
|
Answer» |
|
| 10720. |
(cos20^(@)+8sin10^(@)sin50^(@)sin70^(@))/(sin^(2)80^(@))= |
|
Answer» 1 |
|
| 10721. |
Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P thenStatement - I: a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are: |
|
Answer» only I |
|
| 10722. |
Two adjacent sides of a parallelogram are 4x+5y=0,and 7x+2y=0. Vertices of the parallelogram are |
| Answer» Answer :D | |
| 10723. |
If int (1)/(5 + 4 cos 2 theta) d theta= A tan^(-1) (" Btan theta) + c then (A, B ) = |
|
Answer» `((1)/(2),(1)/(2)) ` |
|
| 10724. |
Which of the following can cause indigestion ? |
|
Answer» Inadequate ENZYME SECRETION |
|
| 10725. |
STATEMENT-1 Number of elements belonging to exactly, 2q, the sets of A,B,C is n(A cap B)+n(B cap C)+n(C cap B)-3n(A cap B capC) STATEMENT-2 Number of elements belonging to exactly one of the sets A,B and C is n(A cup B cup C)-n(A cap B)-n(A cap C)+2n(A cap B capC) |
|
Answer» |
|
| 10726. |
Integrate the function (sin^(-1)x)^(2) |
|
Answer» |
|
| 10727. |
Five fair coins are tossed simultaneously. If the probability of getting at most n heads is 0.5, then n = |
|
Answer» 1 |
|
| 10728. |
A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........ |
|
Answer» `-x^(2)+2` |
|
| 10729. |
The no. of terms in (x + sqrt(x^2 - 1))^6 + (x -sqrt(x^2 - 1))^6 |
|
Answer» 8 |
|
| 10730. |
Find the cartesian equation fo the following planes.vecr.(2hati+3hatj-4hatk)=1 |
|
Answer» |
|
| 10732. |
(i) If A= {x,y,z}, B=(1,2,3} and R= {(x,2),(y,3),(z,1),(z,2), then find R^(-1). (ii) If R is a relations such that R ={(4,5),(1,4),(4,6),(7,6),(3,7)}, then findR^(-1) oR^(-1) |
|
Answer» |
|
| 10733. |
(a) Draw the graph of f(x) = ={{:(1",",, |x| ge 1), ((1)/(n^(2)) ",",, (1)/(n)lt |x|lt (1)/(n-1)","n= 2"," 3"," ...), (0",",, x=0):} (b) Sketch the region y le -1. (c) Sketch the region |x| lt 3. |
|
Answer» Solution :(a)`f(x) = ={{:(1",",, |x| ge 1), ((1)/(n^(2)) ",",, (1)/(n)lt |x|lt (1)/(n-1)","n= 2"," 3"," ...), (0",",, x=0):}` `""={{:(1",",, xle -1 or x ge 1), ((1)/(4) ",",, x in (-1, -(1)/(2))uu ((1)/(2), 1)), ((1)/(9) ",",, x in ((-1)/(2), (-1)/(3))uu ((1)/(3), (1)/(2))),(...,,):}` ![]() (B) `y le -1` For `y le -1`, first DRAW the line `y =-1`. All the POINTS SATISFYING `y le -1` have ordinate greater than, or equal to, -1, i.e. all the points lying on or below the line `y=-1`. The region is as shown in the following region. ![]() (c )` |x| lt 3` So `-3 lt x lt 3`, i.e. all points have abscissae lying between -3 and 3. HENCE all the points lying between the lines `x=-3 and x=3`.
|
|
| 10734. |
intsecx/(secx+tanx)dx |
|
Answer» SOLUTION :`I=intsecx/(SECX+tanx)DX` =`INT(secx(secx-tanx))/(sec^2x-tan^2x)dx` =`intsec^2x-secxtanxdx` =tanx-secx+c |
|
| 10735. |
Show that the product of the perpendicular from (alpha,beta) to the pair of lines S-= ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 is (|aalpha^(2)+2halphabeta+2galpha+2fbeta+c|)/(sqrt((a-b)^(2)+4h^(2))) Hence or otherwise find the product of the perpendicular from the origin |
|
Answer» |
|
| 10736. |
Find the sum of the series C_(1)+2^(2) *C_(2)x+3^(2)*C_(3)x^(2)+4^(2)*C_(4)x^(3)+….+n^(2)*C_(n) *x^(n-1) and deduce (n gt 2) the value of C_(1)-2^(2) *C_(2) +3^(2)-C_(3) - …+(-1)^(n-1) *n^(2)*C_(n) |
|
Answer» |
|
| 10737. |
Let f (x) be twice differentiable functin such that f''(x) gt 0 in[0,1]. Then |
|
Answer» `F (0) + f (1) = 2f (c ), LT c lt 1` |
|
| 10738. |
If the complex number a is such that |a|=1 and arg(a) =theta, then the roots of the equation ((1 + iz)/(1-iz))^(4) = a are z= |
|
Answer» `tan ((2K PI + THETA)/(4)) , k = 0,1,2,3` |
|
| 10739. |
If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order. |
|
Answer» A, B, C |
|
| 10740. |
Iff(x)={{:(sin x ,ifx le 0),(x^2 + a^2, if0 lt x lt 1 ),(bx+2,if 1 le x le 2 ),(0,if x gt 2):} is continuous OnR thena + b+ab = |
| Answer» ANSWER :D | |
| 10741. |
If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= a (cos theta+ theta sin theta), y= a (sin theta-theta cos theta). |
|
Answer» |
|
| 10742. |
If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= a(cos t+ log tan (t/2)), y= a sin t. |
|
Answer» |
|
| 10743. |
int_(0)^(2pi) x sin^(6) x cos^(5) x dx= |
|
Answer» `0` |
|
| 10744. |
If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= cos theta, y= sin theta. |
| Answer» | |
| 10745. |
Let l_(n)=int_(0)^(1){P(x^(2))+P(x^(2)-1)}^(n)dx. If (k+1)l_(n)=2k(1+l_(n-1)), then the value of n is |
| Answer» Answer :B | |
| 10746. |
If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= 4t, y= (4)/(t). |
|
Answer» |
|
| 10747. |
If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x = sin t, y= cos 2t. |
|
Answer» |
|
| 10748. |
If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= a cos theta, y= b cos theta. |
|
Answer» |
|
| 10749. |
If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= 2at, y= at^(4). |
| Answer» | |
| 10750. |
Prove that for every positive number s satisfying the condition s^2 gt 2 one can always find a smaller rational number s-k (k gt 0), forwhich (s-k)^(2) gt 2. |
|
Answer» |
|