Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

10701.

Find two positive number whose sum is 15 and the sum of whose squares is minimum.

Answer»


ANSWER :`(15)/(2)` and `(15)/(2)`
10702.

For what value of lambda, is the vector 2/3i-lambdaj+2/3k a unit vector ?

Answer»


ANSWER :`pm1/3`
10703.

If cosh beta= secalphacos theta,sin h beta = " cosec "alphasin theta," then "sinh^(2)beta=

Answer»

`sin alpha COS alpha`
`cos^(2)alpha`
`cos^(2)alpha`
`sin alpha + cos alpha`

ANSWER :C
10704.

Solve the linear programming problem Maximise Z=x+2y Subject to the constraints: x-yle10, 2x + 3y le20and xge0, yge0

Answer»


Answer :Maximum VALUE of Z `Z=40/2 ` at `(0,(20)/3)`
10705.

int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(2)x+cos^(4))x)dx is equal to

Answer»

`SEC^(-1)(secx+cosx)+C`
`sec^(-1)(secx-cosx)+C`
`sec^(-1)(secx-tanx)+C`
NONE of these

Answer :a
10706.

The value of the series cos 12 ^(@) + cos 84^(@) + cos 132^(@)+cos 156^(@) is,

Answer»

`1/2`
`1/4`
`-1/4`
`-1/2`

ANSWER :D
10707.

Integrate the functions sinx

Answer»


ANSWER :`-cosx+C`
10708.

If 4 cos^(4) theta , 4 sin^(4) theta + alpah are the roots of the equation x^2 +b(2x+1)=0 and 4cos^(2) theta +beta, 4sin^(2)theta + beta are the roots of the equation x^2 + 4x +2 =0 then b is equal to :

Answer»

1
`-1`
0
`-2`

ANSWER :B
10709.

If the first derivative of a function vanishes at all points and if f(0) =1, then what is f(x)?

Answer»

SOLUTION :Given f(x) =0 `IMPLIES` f(x) = C but f(0) =1 `THEREFORE` C=1 The function is f(x) =1.
10710.

An equation (dy)/(dx) + p(x).y = q(x) is called

Answer»

VARIABLE SEPARABLE
Homogeneous
Linear EQUATION in x
Linear equation in y

Answer :D
10711.

For non zero vectors veca,vecb, vecc (veca xx vecb). Vecc= |veca| |vecb||vecc| holds iff:

Answer»

`VECA. VECB=0, vecb. Vecc=0, vecc.vecane0`
`vecb.vecc=0, veccveca=0, veca,vecbne0`
`vecc.veca=0,veca.vecb=0,vecb.veccne0`
`veca.vecb=vecb.vecc=vecc.veca=0.`

ANSWER :D
10712.

Let a, b and c be distinct non-negative numbers. If the vectors ahati+ahatj+c hatk, hati+hatk and chati+chatj+bhatk lie in a plane, then c is

Answer»

the HARMONIC MEAN of a and b
equal to zero
the ARITHMETIC mean of a and b
the geometric mean of a and b

Solution :SINCE , thegivenpoints lie on a plane.
`:. |{:(a,a,c),(1,0,1),(c,c,b):}| = 0`
On applying `C_(1) rarr C_(1) - C_(2)` , we get
`|{:( 0,a,c),(1,0,1),(0,c,b):}| = 0`
`rArr -1(ab - c^(2)) = 0 rArr c^(2) = ab`
Hence,c is GM of a and b.
10713.

If f(x)=-x^2 , which represents the graph of f(x)+3 ?

Answer»




ANSWER :C
10714.

Let G be the centroid of the DeltaABC, whose sides are of lengths a,b,c. If P be a point in the plane of triangleABC, such that PA=1,PB=3, PC=4 and PG=2, then the value of a^(2)+b^(2)+c^(2) is

Answer»

42
40
36
28

Solution :As `|veca+vecb+VECC|^(2)+ |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)`
`=3(|veca|^(2)+|vecb|^(2)+|vecc|^(2))`
So, `9(GP)^(2)+(AB)^(2)+(BC)^(2)+(CA)^(2)`
`=3(PA)^(2)+(PB)^(2)+(PC)^(2)`
`RARR 9 xx 2^(2)(a^(2)+b^(2)+c^(2))=3(1^(2)+3^(2)+4^(2))`
`rArr a^(2)+b^(2)+c^(2)=42`
10715.

A: There is no triangle ABC for A= Tan^-1 2, B= Tan^-1 3 R: IF x gt 0, y gt 0 and xy gt 1 then Tan^-1x+Tan^-1y=pi+Tan^-1((x+y)/(1-xy))

Answer»

A is TRUE, R is true and R is CORRECT EXPLANATION of A
A is true, R is true and R is not correct explanation of A
A is true, R is FALSE
A is false, R is true

Answer :D
10716.

If sin^(-1) x=y,thenfind the range of y

Answer»

`0LE ylepi`
`-pi/2leylepi/2`
`0ltyltpi`
`-pi/2ltyltpi/2`

ANSWER :B
10717.

A bag contains 4 red, 3 black and 2 white balls. One by one three balls are drawn without replacement. Find the probability of selecting atleast one white ball.

Answer»


ANSWER :`(2)/(9) ~~ 0.22`
10718.

If a, b, c are non-zero, non-collinear vectors such that a vectors such that a vector p=abcos(2pi-(a,c))c and aq=ac cos(pi-(a, c)) then b+q is

Answer»

parallel to a
perpendicular to a
coplanar with B and c
coplanar with a and c

Answer :B::C
10719.

Find the area of the region enclosed between the circles x^(2)+y^(2)=4 and (x-2)^(2)+y^(2)=4

Answer»


ANSWER :`(8pi)/(3)-2SQRT3`
10720.

(cos20^(@)+8sin10^(@)sin50^(@)sin70^(@))/(sin^(2)80^(@))=

Answer»

1
2
3
4

Answer :B
10721.

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P thenStatement - I: a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are:

Answer»

only I
only II
both I, II
neither I nor II

Answer :C
10722.

Two adjacent sides of a parallelogram are 4x+5y=0,and 7x+2y=0. Vertices of the parallelogram are

Answer»

`(0,0)`
`(1,1)`
`((5)/(3),(4)/(3))`
All of these

Answer :D
10723.

If int (1)/(5 + 4 cos 2 theta) d theta= A tan^(-1) (" Btan theta) + c then (A, B ) =

Answer»

`((1)/(2),(1)/(2)) `
`((1)/(3), (1)/(3))`
`((1)/(2) , 3)`
`((1)/(3) , 2)`

ANSWER :B
10724.

Which of the following can cause indigestion ?

Answer»

Inadequate ENZYME SECRETION
FOOD poisioning and SPICY food
Anxiety and over eating
All of these

Answer :A
10725.

STATEMENT-1 Number of elements belonging to exactly, 2q, the sets of A,B,C is n(A cap B)+n(B cap C)+n(C cap B)-3n(A cap B capC) STATEMENT-2 Number of elements belonging to exactly one of the sets A,B and C is n(A cup B cup C)-n(A cap B)-n(A cap C)+2n(A cap B capC)

Answer»


ANSWER :A
10726.

Integrate the function (sin^(-1)x)^(2)

Answer»


ANSWER :`(SIN^(-1)X)^(2)=2sqrt(1-x^(2))sin^(-1)x-2x+C`
10727.

Five fair coins are tossed simultaneously. If the probability of getting at most n heads is 0.5, then n =

Answer»

1
2
3
4

Answer :B
10728.

A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........

Answer»

`-x^(2)+2`
`x^2-2`
`x^(2) - 2, x in R - {0} `
`x^(2) - 2, |x| in [2,OO)`

SOLUTION :N/A
10729.

The no. of terms in (x + sqrt(x^2 - 1))^6 + (x -sqrt(x^2 - 1))^6

Answer»

8
6
7
4

Answer :D
10730.

Find the cartesian equation fo the following planes.vecr.(2hati+3hatj-4hatk)=1

Answer»


ANSWER :Replacing `vecr` by `xhati+yhatj+zhatk`, we have `(xhati+yhatj+zhatz).(2hati+3hatj-4hatk)=1` i.e., `2x+3y-4z =1` which is the cartesian EQUATION of the PLANE.
10731.

Solve the system x+3y-4z =03x-y+2z=0 4x+2y-2z=0

Answer»


ANSWER :`(-(t)/(5), (7)/(5)t,t)`
10732.

(i) If A= {x,y,z}, B=(1,2,3} and R= {(x,2),(y,3),(z,1),(z,2), then find R^(-1). (ii) If R is a relations such that R ={(4,5),(1,4),(4,6),(7,6),(3,7)}, then findR^(-1) oR^(-1)

Answer»


Answer :(i) `R^(-1)={(2,X),(3,y),(1,Z),(2,z)}"" (ii){(5,1),(6,1),(6,3)}`
10733.

(a) Draw the graph of f(x) = ={{:(1",",, |x| ge 1), ((1)/(n^(2)) ",",, (1)/(n)lt |x|lt (1)/(n-1)","n= 2"," 3"," ...), (0",",, x=0):} (b) Sketch the region y le -1. (c) Sketch the region |x| lt 3.

Answer»

Solution :(a)`f(x) = ={{:(1",",, |x| ge 1), ((1)/(n^(2)) ",",, (1)/(n)lt |x|lt (1)/(n-1)","n= 2"," 3"," ...), (0",",, x=0):}`
`""={{:(1",",, xle -1 or x ge 1), ((1)/(4) ",",, x in (-1, -(1)/(2))uu ((1)/(2), 1)), ((1)/(9) ",",, x in ((-1)/(2), (-1)/(3))uu ((1)/(3), (1)/(2))),(...,,):}`

(B) `y le -1`
For `y le -1`, first DRAW the line `y =-1`. All the POINTS SATISFYING `y le -1` have ordinate greater than, or equal to, -1, i.e. all the points lying on or below the line `y=-1`.
The region is as shown in the following region.

(c )` |x| lt 3`
So `-3 lt x lt 3`, i.e. all points have abscissae lying between -3 and 3. HENCE all the points lying between the lines `x=-3 and x=3`.
10734.

intsecx/(secx+tanx)dx

Answer»

SOLUTION :`I=intsecx/(SECX+tanx)DX`
=`INT(secx(secx-tanx))/(sec^2x-tan^2x)dx`
=`intsec^2x-secxtanxdx`
=tanx-secx+c
10735.

Show that the product of the perpendicular from (alpha,beta) to the pair of lines S-= ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 is (|aalpha^(2)+2halphabeta+2galpha+2fbeta+c|)/(sqrt((a-b)^(2)+4h^(2))) Hence or otherwise find the product of the perpendicular from the origin

Answer»


ANSWER :`(|a alpha^2+2halphabeta+b beta^2|)/(SQRT((a-b)^2+4h^2))`
10736.

Find the sum of the series C_(1)+2^(2) *C_(2)x+3^(2)*C_(3)x^(2)+4^(2)*C_(4)x^(3)+….+n^(2)*C_(n) *x^(n-1) and deduce (n gt 2) the value of C_(1)-2^(2) *C_(2) +3^(2)-C_(3) - …+(-1)^(n-1) *n^(2)*C_(n)

Answer»


SOLUTION :N/A
10737.

Let f (x) be twice differentiable functin such that f''(x) gt 0 in[0,1]. Then

Answer»

`F (0) + f (1) = 2f (c ), LT c lt 1`
`f (x) +f (1) = 2f ((1)/(2))`
`f (0) + f(1) gt 2f ((1)/(2))`
`f (0 ) + f (1) lt 2f ((1)/(2))`

ANSWER :B::C
10738.

If the complex number a is such that |a|=1 and arg(a) =theta, then the roots of the equation ((1 + iz)/(1-iz))^(4) = a are z=

Answer»

`tan ((2K PI + THETA)/(4)) , k = 0,1,2,3`
`tan ((k pi + theta)/(8)),k = 0,1,2,3`
`tan ((3 k pi + theta)/(4)), k = 0,1,2,3`
`tan ((2k pi + theta)/(8)), k = 0,1,2,3`

ANSWER :D
10739.

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order.

Answer»

A, B, C
C, B, A
C, A, B
B, C, A

Answer :C
10740.

Iff(x)={{:(sin x ,ifx le 0),(x^2 + a^2, if0 lt x lt 1 ),(bx+2,if 1 le x le 2 ),(0,if x gt 2):} is continuous OnR thena + b+ab =

Answer»

`-2`
`0`
`2`
`-1`

ANSWER :D
10741.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= a (cos theta+ theta sin theta), y= a (sin theta-theta cos theta).

Answer»


ANSWER :`TAN THETA`
10742.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= a(cos t+ log tan (t/2)), y= a sin t.

Answer»


ANSWER :`TAN t`
10743.

int_(0)^(2pi) x sin^(6) x cos^(5) x dx=

Answer»

`0`
`(5PI)/(32)`
`(8pi)/(693)`
`(35pi)/(64)`

ANSWER :A
10744.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= cos theta, y= sin theta.

Answer»
10745.

Let l_(n)=int_(0)^(1){P(x^(2))+P(x^(2)-1)}^(n)dx. If (k+1)l_(n)=2k(1+l_(n-1)), then the value of n is

Answer»

`(K,N,INN)`
2
4
none of these

Answer :B
10746.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= 4t, y= (4)/(t).

Answer»


ANSWER :`-(1)/(t^2)`
10747.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x = sin t, y= cos 2t.

Answer»


ANSWER :`-4 SIN t`
10748.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= a cos theta, y= b cos theta.

Answer»


ANSWER :`(B)/(a)`
10749.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= 2at, y= at^(4).

Answer»
10750.

Prove that for every positive number s satisfying the condition s^2 gt 2 one can always find a smaller rational number s-k (k gt 0), forwhich (s-k)^(2) gt 2.

Answer»


Answer :You MAY TAKE `K=(s^(2)-2)/(2S)`