Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

10751.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx). x= (sin^(3)t), y= (cos^(3)t).

Answer»
10752.

Evaluate int_(0)^(pi)(1)/(3 + 2 cos x)dx

Answer»


ANSWER :`(PI)/(SQRT(5))`
10753.

A plane passes through the points (alpha,1,0),(alpha,2,1),(-2,2,-1)and(1,1,0) for some alphainR. Then the distance of the point (1,1,1) from the plane is:

Answer»

`(1)/(sqrt(22))`
`(5)/(sqrt(11))`
`(3)/(sqrt(22))`
`(2)/(sqrt(11))`

Answer :C
10754.

Let f(x)=x(x^(2)+mx+n)+2," for all" x neR and m, n in R. IfRolle's theorem holds for f(x)at x=4//3 x in[1,2], then (m+n)"equal""_______".

Answer»


ANSWER :3
10755.

Check whether the relation R defined in the set {1,2,3,4,5,6} as R = {(a,b) : b = a +1 } is reflexive , symmetric or transitive.

Answer»


SOLUTION :N/A
10756.

Out of 13 applicants for a job, there are 5 women and 8 men. It is desired to select 2 persons for the job. The probability that atleast one of the selected persons will be a woman is

Answer»

`10//13`
`5//13`
`14//39`
`25//39`

ANSWER :D
10757.

15^(th) term of (2x-3y)^(20)

Answer»


Answer :`""^(20)C_(14) 2^(8) 3^(14) X^(8).y^(14)`
10758.

Differentiate.sin^(-1)((2x)/(1+x^2))w.r.t.cos^(-1)((1-x^2)/(1+x^2))

Answer»

SOLUTION :Let `y=sin^(-1)FRAC(2x)(1+X^2)`
and `z=cos ^(-1)frac(1-x^2)(1+x^2)Then `y=2 TAN ^(-1)x`and`z=2tan^(-1)x`so y=z
`thereforedy/dx=1.`
10759.

int " cosec"^(3)" x dx "

Answer»


Answer :`-(1)/(2) " COSEC x cot x"+(1)/(2) LOG | tan.(x)/(2)|+C`
10760.

If |{:(x,-6,-1),(2,-3x,x-3),(-3,2x,x+2):}|=0 then x = ……..

Answer»

`-3,-2,1`
`-3,2,-1`
`-3,2,1`
3,2,1

Answer :C
10761.

Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is

Answer»

`2//9`
`1//9`
`8//9`
`7//9`

ANSWER :B
10762.

Find the condition that the curves 2x=y^(2) and 2xy = k intersect orthogonally.

Answer»


ANSWER :`k=2sqrt(2)`
10763.

Verify the above theorem for F(x,y)=x^(2)-2y^2+2xy and x(t) = cos t, y (t) = sin t, t in[0,2pi]

Answer»


ANSWER :`(DF)/(DT)
10764.

If x^(2) + ax + 1is a factor of ax^(3) + bx + c, them find the conditions.

Answer»

`c^3=ab^3`
`a^3=bc^3`
`a^3=b^3c`
`b^3=ca^3`

ANSWER :D
10765.

Let Q be the foot the perpendicular from the origin to the plane 4x-3y+z+13=0and R be the points (-1, 1,-6)on the plane Then length QR is

Answer»

`SQRT(14)`
` sqrt(19//2)`
`3 sqrt(7//2) `
` 3//sqrt2`

ANSWER :C
10766.

int(sqrt(1-x^2)+x^2/sqrt(1-x^2))dx

Answer»

SOLUTION :`INT(SQRT(1-x^2)+x^2/sqrt(1-x^2))DX`
=`int{(1-x^2+x^2)/sqrt(1-x^2)}dx=intdx/sqrt(1-x^2)`
=`sin^-1x+C`
10767.

Prove the following int_(0)^(1)xe^(x)dx=1

Answer»


ANSWER :1
10768.

Consider f(x)=sin^(-1)((x+3)/(2x+5)),g(x)=sin^(-1)((ax^(2)+b)/(x^(2)+5)). If Lim_(xto oo)(f(x)-g(x))=0 and Lim_(xto oo) (f(x)+g(x))=(pi)/(4), then find the value of (a+b^(2)).

Answer»

Solution :`underset(xtooo)Limsin^(-1)((x+3)/(2x+5))-SIN^(-1)((ax^(2)+b)/(x^(2)+5))=0"as"xtooosin^(-1)((x+3)/(2x+5))=(PI)/(6)`
`:.""underset(xtooo)Limsin^(-1)((ax^(2)+b)/(x^(2)+5))=(pi)/(6)"":.""a=(1)/(2)`
Now,
`underset(xtooo)Limsin^(-1)((x+3)/(2x+5))+sin^(-1)((ax^(2)+b)/(x^(2)+5))=(pi)/(4)rArr"sin"^(-1)(3)/(4)rArr+"sin"^(-1)((b)/(5))=(pi)/(4)`
`sin^(-1)((b)/(5))=tan^(-1)1-"tan"^(-1)(3)/(4)rArr""sin^(-1)((b)/(5))=sin^(-1)((1)/(SQRT(50)))`
`:.""b=(1)/(sqrt(2))"":.""b^(2)=(1)/(2)`
`:.""a+b^(2)=1`.
10769.

Differentiate the functions with respect to x in Exerecises 1 to 8. cos ( sin x)

Answer»


ANSWER :`-COS X SIN (sin x)`
10770.

Evaluate the definite integrals int_(0)^((pi)/(2))(cos^(2)xdx)/(cos^(2)x+4sin^(2)x)

Answer»


ANSWER :`pi/6`
10771.

If a die is thrown 5 times. Then find the probability that an odd number will come up exactly three times.

Answer»


ANSWER :`(5)/(16)`
10772.

Consider the following units

Answer»

5 3 2 1
3 2 4 1
5 3 4 1
1 2 3 4

Answer :C
10773.

A ball is dropped from a height of 48 meters and rebounds 2/3 of the distance it falls. If it continues to fall and rebound in this way, the distance the ball travels before coming to rest is

Answer»

a. 144 meters
B. 240 meters
c. 120 meters
d. 96 meters

Answer :B
10774.

solve abs(x^(2)-1+sinx)=abs(x^(2)-1)+abs(sinx), where x in [-2pi,2pi].

Answer»


ANSWER :`x in [-2PI,-PI] cup [-1,0] cup [1,pi]`
10775.

A unit vector coplanar with i+j+3k and i+3j+k and perpendicular to i+j+k is

Answer»

`1/sqrt2 (j+k)`
`1/sqrt3 (i-j+k)`
`1/sqrt2 (j-k)`
`1/sqrt3 (i+j-k)`

ANSWER :C
10776.

Write the scalar and vector components of the vector with initial point (-2, 1, 0) and terminal point (1, -5, 7).

Answer»


ANSWER :SCALAR COMPONENT `=3,-6,7`,
VECTOR component `=3hati-6hatj+7hatk`
10777.

For an H.P. the 3^(rd) term and 14^(th) terms are respectively 6/7 and 1/3. (i) Find the first term of H.P. (ii) Hence find the 10^(th) terms of H.P.

Answer»


ANSWER :` :. 10^(TH)` TERM of H.P. ` = 3/7`
10778.

If the expression ax ^(4)+bx^(3)-x ^(2)+2x+3 has the remainder 4x +3 when divided by x ^(2) + x-2, then a + 4b =…..

Answer»


ANSWER :9
10779.

(i) Slove:tan ^(-1) (x+1)+ tan ^(-1) (x-1)= tan ^(-1). (8)/(31) (ii) Slove :tan^(-1).(1)/(a-1) = tan^(-1).(1)/(x) + tan^(-1).(1)/(a^(2) - x+1)

Answer»


Answer :(i) `(1)/(4),8` (ii) `X = a,a^(2) - 1`
10780.

If alpha, beta , gamma are the roots of x^(3) + 2x^(2) - 3x + 4 = 0 then the equation whose roots beta gamma, gamma alpha, alpha betais

Answer»

`X^(3) + 3x^(2) + 8X + 16 + 0 `
`x^(3) + 3x^(2) + 8x - 16 = 0 `
`x^(3) + 3x^(2) - 8x - 16 = 0 `
`x^(3) - 3x^(2) + 8x + 16 = 0`

Answer :2
10781.

If a = 8,b=6 , C= 4 find tan B/2.

Answer»

SOLUTION :If a = 8 , b = 6, c = 4 then s = (a+b+c)/2 = (8+6+4)/2 = 9
`therefore tanB/2 = sqrt((s-c)(s-a))/(s(s-b))`
= `sqrt((9-4)(9-8)/9(9-6)) = sqrt(5xx1)/(9xx3) = `sqrt5/3sqrt3`
10782.

y' + y = e^(x)

Answer»


ANSWER :ORDER 1; DEGREE 1
10783.

A portion of a 24 m high tree is broken by tornado and struck the ground making an angle of 30^(@) with the ground. The height of the point where the tree is broken is equal to ___________ m

Answer»


ANSWER :`8.00`
10784.

Two fair dice are rolled. Find the probability of getting even number on the first die and odd number on the 2nd die.

Answer»


ANSWER :`(1)/(4)`
10785.

Write the converse of the following statements. (i) If a number n is even, then n^(2) is even. (ii) If you do all the exercises in the book, you get an A grade in the class. (iii) If two integers a and b are such that a gt b, then a -b is always a positive integer.

Answer»

if a NUMBER `N^(2)` is EVEN, then n is even
if `n^(2)` not even, then n is not even
neither n nor `n^(2)` is even
none of these

Answer :A
10786.

Integrate the following function : int(dx)/(sqrt((x+5)(x-1)))

Answer»


Answer :`LOG|(x+3)+SQRT(x^(2)+6x+5)|+C`
10787.

If bar(a),bar(b),bar( c ) and bar(d) are coplanar vectors then (bar(a)xx bar(b))xx(bar( c )xx bar(d))= …………..

Answer»

`|BAR(a)XX bar( C )|^(2)`
`(bar(a)xxbar(a))^(2)`
`|bar(B)xx bar( c )|^(2)`
0

Answer :D
10788.

The simple and weighted arithmetic mean of the first n natural numbers, the weights being the corresponding numbers is

Answer»

`(N+1)/(2), (2n+1)/(2)`
`(n+1)/(2), (2n+1)/(4)`
`(n+1)/(2), (2n+1)/(3)`
`n, n^(2)`

ANSWER :C
10789.

Express in the form ((I+i)^2)/(3-i)

Answer»

SOLUTION : `((I+i)^2)/(3-i)=((1+i^2+2I)(3+i))/((3-i)(3+i))`
`(2i(3+i))/(9-i^2)=(6I+2i^2)/(9+i)=(6i-2)/(10)`
`(-2)/(10)+(6i)/(10)=- 1/5+(3I)/5`
10790.

int (x.e^(x))/((2 + x)^(3))dx =

Answer»

`(e^(X))/((2 + 3)^(3)) + C`
`(x e^(x))/((2 + x)^(2)) + c`
`(e^(x))/((2 + x)^(2)) + c`
`(x e^(x))/(2 +x ) + c`

Answer :C
10791.

Obtain the following integrals : int (sin^(-1)x)/((1-x^(2))^((3)/(2)))dx

Answer»


Answer :`:. I=((sin^(-1)X)x)/(SQRT(1-x^(2)))+log|sqrt(1-x^(2))|+C`
10792.

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) in four points P(x_(1),y_(1)),Q(x_(2),y_(2)),R(x_(3),y_(3)) and S(x_(4),y_(4)) then

Answer»

`x_1 + x_2 + x_3 + x_4 =0`
`x_1 x_2 x_3 x_4 =0`
`y_1 + y_2 + y_3 + y_4 =0`
all the correct

Answer :D
10793.

Calculate total charge present on 9.6 g of SO_(1)^(-2) ion?

Answer»

`1.927xx10^(4)C`
`1.927xx1010^(-4)C`
`1.204xx10^(4)C`
`9.63xx10^(4)C`

ANSWER :A
10794.

Evaluate : int " cosec"xdx

Answer»


SOLUTION :N/A
10795.

If a**b=(ab)/3 on Q^+ then the inverse of a(a ne0) for ** is ......

Answer»

`3/a`
`9/a`
`1/a`
`2/a`

SOLUTION :N/A
10796.

Let PQ and RS be two parallel chords of a given circle of radius 6 cm, lying on the same side of the center. If the chords subtends angles of 72^(@)and 144^(@) at the center and the distance between the chords is d, then d^(2) is equal to

Answer»


ANSWER :9
10797.

State which of the following are positive ?Cos 271^@

Answer»

SOLUTION :`cos 271^@` is +ve as `271^@` LIES in 4TH QUADRANT.
10798.

Find derivatives of the following function.(logx)^(tanx)

Answer»

SOLUTION :`y=(LOGX)^(TANX)`
`rArrlog y=tanxcdotlog(logx)`
`rArr1/ydy/dx=sec^2xlog(logx)+tanxcdot1/(logx)cdot1/x`
`RARR dy/dx=(logx)^(tanx){sec^2xcdotloglogx+tanx/(XLOGX)}`
10799.

The solution of x log x (dy)/(dx) +y =1 is

Answer»

`log x = (C)/((y-1))`
`y log x(DY)/(DX) + y = 1`
`xy= log (log x) + c`
`(x)/(y)log y = c`

Answer :A
10800.

IF Delta ABC, is an equilateral triangle, then ratio of the sides of the triangle to its ex-centre triangle is

Answer»

`1:2`
`2:1`
`4:3`
`5:3`

ANSWER :A