Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11051.

All the permissibel of b ,if a=0 S_(2) is a subset of (0,pi)

Answer»

`(N PI , n in Z) and (m pi+(-1))^(m) (a sin b) , m in Z)`
`((npi)/(2), n in Z) and (MPI+(-1))^(m)(a sin b,m in Z)`
`((npi)/(2), n in Z) and (m pi +(-1))^(m) sin^(-1)(a//2) sin b,m in Z`
none of these

ANSWER :b
11052.

If overline(a), overline(b), overline(c) are non-coplanar vectors and lambda is a real number, then [[lambda(overline(a)+overline(b)), lambda^(2)overline(b), lambdaoverline(c)]]=[[overline(a), overline(b)+overline(c), overline(b)]] for

Answer»

EXACTLY three VALUES of `LAMBDA`
exactly TWO values of `lambda`
exactly one values of `lambda`
no real values of `lambda`

Answer :D
11053.

If p:0 is a natural number q:5 is a factor of 10, then

Answer»

<P>`p implies~q and ~PTOQ` are TRUE
`pto~q` is true and `~ptoq` is FALSE
`~ptoq` is false
`~pto~q` is true

Answer :A
11054.

Evaluate the following inegrals int(sec^(2)x)/(sqrt(a+btanx))dx,a,b are positive real numbers

Answer»


ANSWER :`(1)/(B)2sqrt(a+btanx)+C`
11055.

Evalute the following integrals int x^(2) sin^(-1) xdx

Answer»


ANSWER :`(X^(3))/(3) sin^(-1) x +(1)/(3) sqrt(1 -x^(2)) - (1)/(9) (1 - x^(2))^((3)/(2)) + c `
11056.

If f(x) = f'(x) + f''(x) + f'''(x) + ….and f(0)=1, then f(x) =

Answer»

`e^((x)/(2))`
`e^(x)`
`e^(2X)`
`e^(4X)`

ANSWER :A
11057.

Evaluate the following integrals int_0^1(e^x-e^(-x))/(e^x+e^(-x))dx

Answer»

SOLUTION :`int_0^1((e^x-e^(-x))/(e^x+e^(-x))DX)`
`int_2^(e+(1/e))dt/t=[Int]_2^(e+1)`
`In(e+(1/e)-In2)=(In(e^2+1)/(2E))`
11058.

CHOOSE THE ADD MAN OUT :

Answer»

`(3/5)^x = x -x^2 -9`
`sin x = 4`
`TAN x = 1
`cos x = 7`

Answer :C
11059.

Find sum to infinite terms of the series 1 + 2 ((11)/(10)) + 3 ((11)/(10)) ^(2) + 4 ((11)/(10)) ^(3) +………

Answer»


ANSWER :`=100`
11060.

Write the equation of the plane x+3y-7z+2=0 in the intercept from.

Answer»

SOLUTION :The EQUATION of the PLANE through x-axis and y-axis is xy-plane WHOSE equation is z=0.
11061.

The radical centre of the circles x^2+y^2-x+3y-3=0 , x^2+y^2-2x+2y-2=0, x^2+y^2+2x+3y-9=0

Answer»

(2,-1)
(2,3)
(-2,-1)
(-2,-3)

ANSWER :A
11062.

If A and B are symmetric matrices , prove that AB-BA is a skew symmetric matrix.

Answer»


ANSWER :`thereforeP=AB-BA`
11063.

Evaluate the definite integral in exercise overset((pi)/(4)) underset(0) tan x dx

Answer»


ANSWER :`(1)/(2)log_(E)2`
11064.

Three numbers are chosen from 1 to 20. The probability that they are not consecutive is

Answer»

`(186)/(190)`
`(187)/(190)`
`(188)/(190)`
`(189)/(190)`

ANSWER :B
11065.

Discuss the continuity of sine function.

Answer»


ANSWER :F is a CONTINUOUS FUNCTION.
11066.

If the vectors p hati + hatj+ hatk, hati i+ q hatj + hatk and hati + hatj + r hatk ( p ne q ne r ne 1) are coplanar, then the value of pqr-(p + q + r) is :

Answer»

2
-2
0
-1

Answer :B
11067.

The range of a random variable X = {1, 2, 3,…} and the probability distribution of X is given by P(X = n) = (k(n +1))/(2^(n)) (n = 1, 2, 3,…) find k.

Answer»


ANSWER :`1//4`
11068.

A circle of the coaxal system with limiting points (0,0) and (1,0) is

Answer»

`x^(2)+ y^(2) - 2x = 0 `
`x^(2) + y^(2) - 6x + 3 = 0 `
`x^(2) + y^(2) = 1`
`x^(2) + y^(2) - x +1 = 0 `

Answer :B
11069.

Find the difference of percentage ionic character in N-F & B-F bond by using Hanny Smith Equation (EN of B=2, N=3 , F=4)

Answer»


ANSWER :`26.50`
11070.

Area of rhombus is ......., where diagonals are a=2hat(i)-3hat(j)+5hat(k) and b=-hat(i)+hat(j)+hat(k)

Answer»

`SQRT(21.5)`
`sqrt(31.5)`
`sqrt(28.5)`
`sqrt(38.5)`

SOLUTION :GIVEN diaglonals of arhombus are
`a=2hati-3hatj+5hatk" and"b=-hati+hatj+hatk`
`:.""` AREA of RHOMBUS `= 1/2|axxb|`
`=1/2|-8hati-7hatj-hatk|=1/2sqrt(114)=sqrt(28.5)`
11071.

Find int [log(logx)+(1)/((logx)^(2))]dx

Answer»


ANSWER :`X LOG (LOGX)-(x)/(logx)x+c`
11072.

Suppose that 5% of men and 0.25% of women have grey hair. A grey haired person is selected at random. What is the probability of this person being male? Assume that there are equal number of males and females.

Answer»


ANSWER :`(20)/(21)`
11073.

The order and degree of the differential equation ((dy)/(dx)) ^(1//3) -4 (d ^(2)y)/(dx ^(2)) -7x=0 are alpha and beta, then the value of (alpha +beta) is:

Answer»

3
4
2
5

Answer :D
11074.

By the application of Simpson's one-third rule numerical integration, subintervals, the value of int_(0)^(1) (dx)/(1x)is

Answer»

`(17)/(36)`
`(17)/(25)`
`(25)/(36)`
`(17)/(24)`

Solution :SINCE the given integration is divided into two subtintervals.
ie, `h=(1-0)/(2)=(1)/(2)`
`therefore underset(0)overset(1)INT (1)/(1+x)DX=(h)/(3)[(y_(0)+y_(2))+4(y_(1))]`
`"At" x=0, y=1`
`x=(1)/(2), y_(1)=(2)/(3)`
`and x=1, y_(2)=(1)/(2)`
`therefore underset(0)overset(1)int (1)/(1+x)dx=(1)/(2.3)[(1+(1)/2)+4((2)/(3))]`
`=(1)/(6)[(3)/(2)+(8)/(3)]=(25)/(36)`
11075.

Find the number of positive integral solutions of x_1x_2x_3=72

Answer»


ANSWER :60
11076.

If alpha,beta,gamma are the cube roots of p, p lt 0, then for any x, y and z the value of (xalpha+ybeta+zgamma)/(zbeta+ygamma+zalpha) is

Answer»

`OMEGA`
`-omega`
`omega^(2)`
`-omega^(2)`

ANSWER :A::C
11077.

Determine whether or not each of the definitions of ** given below gives a binary operation. In the event that ** is not a binary operation, give justification for this on Z^+, define ** by a**b=ab

Answer»

Solution :If a and b are any two POSITIVE INTEGERS, AB is a unique positive INTEGER.
Therefore, `**` is a binary operation.
11078.

Determine whether or not each of the definitions of ** given below gives a binary operation. In the event that ** is not a binary operation, give justification for this on Z^+, define ** by a**b=a-b

Answer»

SOLUTION :We have 4,5 `in Z^+` but
4-5=-1 `cancelin Z^+`
`THEREFORE ** ` is not a BINARY OPERATION
11079.

If (AB)=B'A', where A and B are not square matrices , then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.

Answer»


ANSWER :TRUE
11080.

Determine whether or not each of the definitions of ** given below gives a binary operation. In the event that ** is not a binary operation, give justification for this on Z^+, define ** by a**b=a

Answer»

Solution :For any two positive INTEGERS a and b, a is a UNIQUE positive INTEGER
`THEREFORE **` is a binary OPERATION
11081.

Determine whether or not each of the definitions of ** given below gives a binary operation. In the event that ** is not a binary operation, give justification for this on Z^+, define ** by a**b=|a-b|

Answer»

Solution :For any TWO positive integers a and b, |a-b| is a UNIQUE positive INTEGER
`therefore **` is a binary OPERATION
11082.

Evaluation of definite integrals by subsitiution and properties of its : If theta_(1) and theta_(2) be respectively the smallest and the largest values of theta in (0,2pi)-{pi} which satisfy the equation, 2cot^(2)theta-(5)/(sintheta)+4=0, then int_(theta_(1))^(theta_(2))cos^(2)3thetad""theta is equal to :

Answer»

`(2pi)/(3)`
`(PI)/(3)`
`(pi)/(3)+(1)/(6)`
`(pi)/(9)`

ANSWER :B
11083.

If P(B not) = 0.65, P(A cup B)= 0.85. A and B are independent then find P(A).

Answer»


ANSWER :0.77
11084.

If y = cos (sqrt(x)) then find dy/dx

Answer»


ANSWER :`-(sinsqrt(X))/(2sqrt(x))`
11085.

Angle between vectors hati - hatj + hatk and hati + 2 hatj + hatk is :

Answer»

`COS ^(-1) (1 )/(sqrr15)`
`cos ^(-1) (4)/(sqrt15)`
`cos ^(-1) (4)/(15)`
`(PI)/(2).`

Answer :D
11086.

If the speed of ball is 145 km//h and the perimeter of the ball is 22.4 cm along the seam and spin ratio of bumrah is 0.1 find angular speed approximately imparted to the ball:

Answer»

1080 RPM
700 rpm
1800 rpm
532 rpm

Answer :A
11087.

u= f (tan x), v= g(sec x), f'(1) =2 and g'(sqrt2)= 4" then " (du)/(dv)|_(x = (pi)/(4))=……….

Answer»

`SQRT2`
2
`(1)/(sqrt2)`
`(1)/(2)`

ANSWER :C
11088.

Evaluate the following integrals intxtan^(-1)x dx

Answer»


ANSWER :`(1)/(2)[(x^(2)+1)TAN^(-1)x-x]+C`
11089.

Show that the line x-2y + 4a = 0 touches y^(2) = 4ax. Also find the point of contact

Answer»


ANSWER :(4a,4a)
11090.

int_0^pi (cos^4 x)/(cos^4 x + sin^4 x) dx =

Answer»

`PI/4`
`pi/2`
`pi/8`
`pi`

ANSWER :B
11091.

{:("Variate (x) ",0, 1, 2,3,... ,n ),("Frequency (f)", ""^(n)C_0, ""^(n)C_1, ""^(n)C_2,""^(n)C _3, ....,""^(n) C_n):}

Answer»

` SQRT((N+1)//2) `
` sqrt(n//2)`
` 2^(n) //n`
NONE of these

ANSWER :D
11092.

State True and False for the following (i) Integrating factor of the differential of the form (dx)/(dy)+p_(1)x=Q_(1) is given bye^(intP_(1)dy). (ii) Solution of the differential equation of the type (dx)/(dy)+P_(1)x=Q_(1) is given by x*IF=int(IF)xxQ_(1)dy. (iii) Correct substitution for the solution of the differential equation of the type (dy)/(dx)=f(x,y), where f(x, y) is homogeneous function of zero degree is y = vx. (iv) Correct substitution for the solution of the differential equation of the type (dy)/(dx)=g(x,y), where g(x,y) is a homogeneous function of the degree zero is x=vy. (v) Number of arbitrary constants in the particular solution of a differential equation of order two is two. (vi) The differential equation representing the family of circles x^(2)+(y-a)^(2)=a^(2) will be of order two. (vii) The solution of (dy)/(dx)=((y)/(x))^(1//3)"is "y^(2//3)-x^(2//3)=c (viii) Differential equation representing the family of curve y=e^(x)(Acosx+Bsinx)"is "(d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0. (ix) The solution of the differential equation (dy)/(dx)=(x+2y)/(x)"is "x+y=kx^(2). (x) Solution of (xdy)/(dx)=y+xtan""(y)/(x)"is "sin((y)/(x))=cx (xi) The differential equation of all non horizontal lines in aplane is (d^(2)x)/(dy^(2))=0.

Answer»

Solution :(i) True
Given differential equation,
`""(dx)/(dy)+P_(1)x=Q_(1)`
`therefore""IF=e^(intp_(1)dy)`
(ii) True
(iii) True
(IV) True
(v) False
There is no arbitrary constant in the particular solution of a differential equation.
(vi) False
We know that, order of the differential equation =number of arbitrary constant
Here, number of arbitrary constant = 1
So order is one.
(vii) True
Given differential equation, `""(dy)/(dx) =((y)/(x))^(1//3)`
`RARR""(dy)/(dx) =(y^(1//3))/(x^(1//3))`
`rArr""y^(-1//3)dy=x^(-1//3)dx`
On integrating both sides, we get
`""inty^(-1//3)dy=intx^(-1//3)dx`
`rArr""(y^(-1//3+1))/((-1)/(3)+1)=(x^(-1//3+1))/((-1)/(3)+1)+C'`
`rArr""(3)/(2)y^(2//3)=(3)/(2)x^(2//3)+C'`
`rArr""y^(2//3)-x^(2//3)=C'""["where",(2)/(3)C'=C]`
(viii) True
Given that, `""y=e^(x)(Acosx+Bsinx)`
On differentiating w.r.t. x, we get
`""(dy)/(dx)=e^(x)(-Asinx+Bcosx)+e^(x)(Acosx+(Bsinx)`
`rArr""(dy)/(dx)-y=e^(x)(-Asinx+Bcosx)`
Again differentiating w.r.t. x, we get
`""(d^(2)y)/(dx^(2))-(dy)/(dx)=e^(x)(-Acosx-Bsinx)+e^(x)(-Asinx-Bcosx)+e^(x)(-Asinx+Bcosx)`
`rArr""(d^(2)y)/(dx^(2))-(dy)/(dx)+y=(dy)/(dx)-y`
`rArr""(d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0`
(ix) True
Given that, `""(dy)/(dx)=(x+2y)/(x)rArr(dy)/(dx)=1+(2)/(x)*y`
`rArr""(dy)/(dx)-(2)/(x)y=1`
`""IF=e^((-2)/(x)dx)=e^(-2logx)=x^(-2)`
The differential solution,
`""y*x^(-2)=intx^(-2)*1dx+k`
`rArr""(y)/(x^(2))=(x^(-2+1))/(-2+1)+k`
`rArr""(y)/(x^(2))=(-1)/(x)+k`
`rArr""y=-x+kx^(2)`
`rArr""x+y=kx^(2)`
(x) True
Given differential equation,
`""(xdy)/(dx)=y+xtan((y)/(x))`
`rArr""(dy)/(dx)=(y)/(x)+tan((y)/(x))""`...(i) ltBrgt Put `""(y)/(x)=v" "i.e., y=vx`
`rArr""(dy)/(dx)=v+(xdv)/(dx)`
On SUBSTITUTING these values in Eq. (i), we get
`""(xdv)/(dx)+v=v+tanv`
`rArr""(dx)/(x)=(dv)/(tanv)`
On integrating both sides, we get
`""int(1)/(x)dx=int(1)/(tanv)dx`
`rArr""log(x)=log(sinv)+logC'`
`rArr""log((x)/(sinv))=logC'`
`rArr""(x)/(sinv)=C'`
`rArr""sinv=Cx""["where, C=(1)/(C')]`
`rArr""sin(y)/(x)=Cx`
(XI) True
Let any non-horizontal line in a plane is given by
`""y=mx+c`
On differentiating w.r.t. x, we get
`""(dy)/(dx)=m`
Again, differentiating w.r.t. x, we get
`""(d^(2)y)/(dx^(2))=0`
11093.

Fundamental theorem of definite integral : int_(0)^(pi/4)tan^(100)xdx+int_(0)^(pi/4)tan^(102)xdx=........

Answer»

`(1)/(102)`
`(1)/(100)`
101
`(1)/(101)`

ANSWER :D
11094.

If the value of a third order determinant is 12, then the value of ther determinant formed by replacing each element by its co-factor will be 144

Answer»


ANSWER :TRUE
11095.

From a point on the ground, if the angles of elevation of a bird flying at constant speed in a horizontal direction, measured at equal intervals of time are alpha, beta, gamma and delta, then

Answer»

`COT^(2) BETA - cot^(2) gamma = 3 (cot^(2) alpha - cot^(2) delta)`
`cot^(2)beta-cot^(2)delta=3(cot^(2)alpha-cot^(2)gamma)`
`cot^(2)gamma -cot^(2)delta = 3(cot^(2)alpha-cot^(2)beta)`
`cot^(2)alpha-cot^(2)delta=3(cot^(2)beta-cot^(2)gamma)`

ANSWER :D
11096.

Show that +:R×R→R and o:R×R→R defined as a∗b=∣a−b∣ and aob=a for all a,b∈R. Show that′ ∗′is commutative but not associative, 'o' is associative but not commutative.

Answer»


ANSWER :NO
11097.

If z = (1 + 2i)/(1 - (1 -i)^(2)) then find Arg z

Answer»
11098.

Integrate the following functions : intsqrt(2ax-x^(2))dx

Answer»


ANSWER :`(1)/(2)(x-a)SQRT(2ax-x^(2))+(a^(2))/(2)SIN^(-1)((x-a)/(a))+C`
11099.

Show thatthe function f(x) = {{:((x I n x)/(1-x) " at " 0 lt x lt 1),(0 "at" x = 0 ),(- 1 "at" x = 1 ):} is integrableon theinterval [0,1]

Answer»


Answer :`lim_(X to 0) F(x) = f(0) and lim_(x to 1 - 0 ) f (x) = f(1) `
11100.

IF 4x^2+4xy- ky ^2-12- 2y+8can bewrittenas theprodu oftwolinearfactors thenthe factorsare

Answer»

`(2X + 3y+4 )(3X +5y +2)`
`(3y+x+9)(y-3x -2)`
`(2x+3y-4)(2x -y-2)`
`(x-y+4 ), (x-2y +5)`

ANSWER :C