Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11651.

inte^(ax)sinbxdx

Answer»


Answer :`(e^(ax))/(SQRT(a^(2)+b^(2)))sin(bx-tan^(-1)""(b)/(a))+C`
11652.

Find (d^(2)y)/(dx^(2)), if y= x^(3) + tan x

Answer»


ANSWER :`6X + 2 SEC^(2)x.tanx`
11653.

Let f(n) =[1/3 + (3n)/100]n,whre [x] denotes the greatest integer less than or equal to x. Then sum_(n=1)^(56) f(n) is equal to

Answer»

689
1399
1287
56

Answer :B
11654.

If two vectors are parallel vectors then :

Answer»

They MUST be in same direction.
They must have EQUAL magnitude
They must be in EXACTLY OPPOSITE direction.
none of above

11655.

int (e^(3x) + e^(x))/(e^(4x) -e^(2x)+1)dx =

Answer»

`(1)/(4) LOG (e^(4X)- e^(2x) + 1) + C `
` tan^(-1) (e^(x) - e^(-x)) + C`
`tan^(-1) (e^(x) - e^(-x))+ C`
`tan^(-1) (e^(-x) - e^(x))+ C`

Answer :B
11656.

If alpha,beta,gamma and delta are the equation x^(4)-1 = 0, then the value of(aalpha+b beta+cgamma+ddelta)/(agamma+bdelta+calpha+dbeta)+(agamma+bdelta+calpha+dbeta)/(aalpha+b beta+cgamma+ddelta), is

Answer»

`3beta`
0
`2gamma`
`3alpha`

ANSWER :d
11657.

Match th statements given in Column-I with theintervals//union of intervalsgivenin column -II

Answer»


ANSWER :A::B::C::D
11658.

Let ABC is be a fixed triangle and P be veriable point in the plane of triangle ABC. Suppose a,b,c are lengths of sides BC,CA,AB opposite to angles A,B,C, respectively. If a(PA)^(2) +b(PB)^(2)+c(PC)^(2) is minimum, then point P with respect to DeltaABC is

Answer»

centroid
circumcentre
orthocenter
INCENTRE

Solution :Let `A(x_(1),y_(1)), B(x_(2),y_(2)),C(x_(3),y_(3))` and `P(h,k)` be the POINTA. Now, `aAP^(2)+b BP^(2)+c CP^(2)`
`=a[(h-x_(1))^(2)+(k-y_(1))^(2)] +b[(h-x_(2))^(2)+(k-y_(2))^(2)] +c [(h-x_(2))^(2)+(k-y_(3))^(2)]`
`= [h^(2)(a+b+c) -2H(ax_(1)+bx_(2)+cx_(3))+(ax_(1)^(2)+bx_(2)^(2)+cx_(3)^(2))]`
`+[k^(2)(a+b+c)-2k(ay_(1)+by_(2)+cy_(3))+(ay_(1)^(2)+by_(2)^(2)+cy_(3)^(2))]`
which is minimum when ` = (ax_(1)+bx_(2)+cx_(3))/(a+b+c), k =(ay_(1)+by_(2)+cy_(3))/(a+b+c)` So, P is incentre of `DeltaABC`.
11659.

If alpah,beta are the roots of x^2-x+1=0 then the quadratic equation whose roots are alpha^(2015), beta^(2015) is

Answer»

`x^2-x+1=0`
`x^2+x+1=0`
`x^2+x-1=0`
`x^2-x-1=0`

ANSWER :A
11660.

If int(cos^(4)x)/(sin^(4)x)dx=Kcotx+Msin2x+L(x)/(2) + C then

Answer»

L = 1
K = - 2
M = -14
none of these

Answer :A
11661.

Using matrices, solve the following system of linear equations: x-y+z=4,2x+y-3z=0,x+y+z=2

Answer»


ANSWER :x=2,y=-1,z=1
11662.

If a_(1), a_(2) …… a_(n) = n a_(n - 1), for all positive integer n gt= 2, then a_(5) is equal to

Answer»

a. 125
B. 120
c. 100
d. 24

Answer :B
11663.

""^(2n)C_(2)-2""^(n)C_(2)=

Answer»

`N^(2)`
`(n-1)^(2)`
`(n+1)^(2)`
`2N^(2)`

ANSWER :A
11664.

If the lines ax + ky + 10 = 0, bx + (k + 1) y + 10 = 0 and cx + (k+2)y + 10 = 0 are concurrent, then

Answer»

a, B, C are in G.P.
a, b, c are in H.P
a, b, c are in A.P
`(a + b)^(2) = c`

ANSWER :C
11665.

x(dy)/(dx) - y + x sin ((y)/(x)) = 0

Answer»


ANSWER :`X [ 1 - cos ((y)/(x))] = C sin ((y)/(x))`
11666.

Identify the type of conic and find centre, foci, vertices, and directices of each of the following: 9x^(2)-y^(2)-36x-6y+18=0

Answer»


ANSWER :`SQRT(10)`
11667.

If f(x)= (x^(2))/(x+a), then f''(a) is equal to

Answer»

4A
`(1)/(8A)`
`(1)/(4a)`
8a

ANSWER :C
11668.

A=[{:(1,2,2),(2,1,2),(2,2,1):}], then A^(3) - 4A^(2) -6A is equal to

Answer»

0
A
`-A`
I

Answer :C
11669.

The value of f(0), so that f(x)= (sqrt(a^(2)-ax + x^(2))-sqrt(a^(2) + ax + x^(2)))/(sqrt(a +x)- sqrt(a-x)) becomes continuous for all x, is given by ………..

Answer»

`a sqrta`
`sqrta`
`-sqrta`
`-a sqrta`

ANSWER :C
11670.

If A =[{:(1,2,3),(3,-2,1),(4,2,1):}] then show that A^(3)-23A - 40 I =0

Answer»


ANSWER :`A^(3)-23 A - 40 I=0`
11671.

If x-15=|-5| , then x = ?

Answer»

`-20`
`-10`
`2/3`
20

Answer :D
11672.

Letvec(a),vec(b),vec(c )be unit such thathat(a) + hat(b ) + hat(c ) = vec(alpha)andhat(a).hat(b)=hat(b).hat(c ) . hat(a) = 1/2| (hat(a) xx hat(b)) xx hat(c)|is equal to -

Answer»

0
`1/2`
1
2

Answer :B
11673.

If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi), where [*] denotes the greatest integer function, the number of solutions in the interval (30,40) is ………… .

Answer»


ANSWER :1
11674.

Number of straight lines represented by x^5+y^5 = 0is ……

Answer»


ANSWER :1
11675.

The value (cos (A+B+C)+cos (A-B-C))/(2 cos (B+C))

Answer»

`COS A`
`SIN A`
`2 COSA`
`2 sin A`

ANSWER :A
11676.

There are 10 intermediate stations on a railway line between two particular stations. The number of ways that a train can be made to stop at 3 of these intermediate stations so that no two of these halting stations are consecutive, is

Answer»

56
126
20
120

Answer :A
11677.

If P (A) = 0.4,P (B | A)= 0.3 and P (B^c | A^c)=0.2. find P(A^c)

Answer»

<P>

SOLUTION :`P(A^c)=1-P(A)=1-0.4=0.6=6/10=3/5`
11678.

Ifint(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+sin^(2)thetacos^(2)theta))d theta = "cosec"^(_1)(f(theta))+C , then

Answer»

`F(THETA)=sin2theta+1`
`f(theta)=1-sin 2 theta`
`f(theta)=sin2theta-1`
NONE of these

Answer :a
11679.

Le A = {1,2, 3,4, 5}. Let {1,2,3} and {4, 5} be two equivalence classes of a relation R on A. The number of elements in R is …………….

Answer»


ANSWER :13
11680.

Write the negation of the following statement: i. p: for every positive real number x, the number x-1 is also positive. ii. q: All cats scratch. r: For every real number x, either x>1 or x

Answer»


ANSWER :that 0`LT` X`lt` L.
11681.

Consider f(x)=tan^(-1)(2/x),g(x)=sin^(-1)(2/(sqrt(4+x^(2)))) and h(x)=tan(cos^(-1)(sin)), then show that (h(f(x))+h(g(x))={(0,xlt0),(x,xgt0):}

Answer»


SOLUTION :NA
11682.

The minimum distance of origin from the plane passing through the point with position vector P and perpendicular to the lineL_(2) is:

Answer»

`SQRT14`
`(7)/(sqrt14)`
`(11)/(sqrt14)`
NONE of these

Answer :C
11683.

Let A=[{:(7,5), (4, 8):}], B=[{:(4, 3), (7, 5):}] " and "C=[{:(-5, 3), (7, -4):}] IF Tr(S) denotes the trace of a square matrix S then sum_(k=0)^(infty)1/(3^(k))Tr{A(BC)^(k)}=

Answer»

`45/2`
36
`81/2`
9

Answer :A
11684.

Evaluate{:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =0

Answer»


ANSWER :`1`
11685.

If x+y+z=3,x+2y+3z,x+4y+9z=6," then: "(y,z)equiv

Answer»

`(-1,0)`
`(1,0)`
`(1,-1)`
`(-1,1)`

ANSWER :B
11686.

If tan^(2)theta, sin^(2)theta are the roots of ax^(2)+bx+c=0 then b^(2)- c^(2) =

Answer»

4AC
`a^(2)`
`4BC`
4ab

Answer :A
11687.

If f(x) = (x+2)/(2x+3). Then int(f(x)/(x^(2)))^(1//2)dxis equal to (1)/(sqrt(2))g((1+sqrt2f(x))/(1-sqrt(2f(x))))-sqrt((2)/(3))h((sqrt(3f(x))+sqrt(2))/(sqrt(3f(x)-sqrt(2)))) +C where

Answer»

`g(x) = tan^(-1)x, h(x) = LOG |X|`
`g(x) - log|x|, h(x) = tan ^(-1)x`
`g(x) = h(x) = tan^(-1)x`
`g(x) = log|x|,h(x) = log |x|`

ANSWER :D
11688.

IF3x^2 +8xy+5y^2 +14 x+22 y+8is resolvableintotwolinearfactorsthen thefactorsare

Answer»

`(2X + 3y+4 )(3X +5Y +2)`
`(3y+x+9)(y-3x -2)`
`(2x+3y-4)(2x -y-2)`
`(x-y+4 ), (x-2y +5)`

Answer :A
11689.

The orthocenter of triangle whose vertices are A(a,0,0),B(0,b,0) and C(0,0,c) is (k/a,k/b,k/c) then k is equal to

Answer»

`(1/a^(2)+1/b^(2)+1/c^(2))^(-1)`
`(1/a+1/b+1/c)^(-1)`
`(1/a^(2)+1/b^(2)+1/c^(2))`
`(1/a+1/b+1/c)`

Solution :Let `O(alpha,BETA,GAMMA)` be orthocenter.
Now, `AO BOT BC`
Similarly, `a(alpha)=b(beta)=cgamma=k`
`THEREFORE alpha=k/a, beta=k/b,gamma=k/c`
The plane `x/a+y/b+z/c=1` contains `(alpha,beta,gamma)`
`therefore k(1/a^(2)+1/b^(2)+1/c^(2))=1`
11690.

If the line y = x touches the curve y=x^(2)+bx+c at (1, 1), then …………

Answer»

B = 1, C = 2
`b=-1, c=1`
b = 1, c = 1
b = 0, c = 1

Answer :B
11691.

Given that lim_(n to oo)sum_(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2+(pi)/(2)-2, then lim_(n to oo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+r^(2))^(m)......(n^(2))^(m)]^(1//n) is equal to

Answer»

`2^(m)E^(m((PI)/(2)-2))`
`2^(m)e^(m(2-(pi)/(2)))`
`e^m((pi)/(2)-2)`
`e^(2M((pi)/(2)-2))`

ANSWER :A
11692.

Let P(x) =x^(2)+ 1/2x + b and Q(x) = x^(2) + cx + dbe two polynomials with real coefficients such that P(x) Q(x) = Q(P(x)) for all real x. Find all the real roots of P(Q(x)) =0.

Answer»


ANSWER :`1/2,-1`
11693.

(i) If a, b, c, are in A.P. then show that ax….+….by +c=0 passes through a fixed point. Find then fixed point. (ii)If 9a^(2)+16b^(2)-24ab-25c^(2)=0, then the family of straight lines ax+by+0 is concurrent at the point whose co-ordinates are given by "________" (iii) If 3a+4b-5c=0, then the family of straight lines ax+by+c=0 passes through a fixed point. Find the coordinates of the point.

Answer»

Solution :(i) a,b,c are in A.P.
`impliesa-2b+c=0`
Comparing the given equation `ax+by+c=0` with `a-2b+c=0` we find that the straight line `ax+by6+c=0` passes through the fixed point `(1,-2).`
(ii) We have,
`9a^(2)+16b^(2)-24ab-25c^(2)=0`
`implies(3a-4b)^(2)-(5c)^(2)=0`
`implies(3a-4b+5c)(3a-4b-5c)=0`
`implies((3)/(5)a-(4)/(5)b+c)((-3)/(5)a+(4)/(5)b+c)=0`
`implies` The FAMILY of lines `ax+by+c=0` is either concurrent at `((3)/(5),(-4)/(5))or (-(3)/(5),(4)/(5))`
(III) We have,
`3a+4b-5c=0`
`implies-(3)/(5)a-(4)/(5)b+c=0`
`implies` The given family of lines `ax+by+x=0` passes through the fixed point `((-3)/(5),(-4)/(5)).`
11694.

A box contains tickets numbered from 1 to 20. If 3 tickets are drawn one by one with replacement then the probability of getting prime number exactly 2 times is

Answer»

`(36)/(125)`
`(12)/(125)`
`(1)/(125)`
`(4)/(125)`

ANSWER :A
11695.

Show that the relation R is R defined as R = {(a,b) : a le b} is reflexive and transitive but not symmetric.

Answer»


SOLUTION :N/A
11696.

Find the order and degree (if defined) of the following differential equations. ((d^2y)/(dx^2))^2 + cos ((dy)/(dx)) = 0

Answer»

Solution :The HIGHEST ORDER derivative in the DIFFERENTIAL EQUATION is `(d^2y)/(dx^2)` . `therefore` The order of the differential equation = 2. The DEGREE of the differential equation is not defined.
11697.

For positive l, m and n, if the planes x = my + mz, y =1z+ nx, z=mx+ 1y intersect in a straight, line, then: 1, m and n satisfy the equation:

Answer»

`1 ^(2) + m^(2) + N^(2) =2`
` I ^(2) + m^(2) + n^(2) + 2ln =1`
`I ^(2) + m^(2) +n^(2) =1`
NONE of these

ANSWER :B
11698.

Find the number of even proper divisors of 2^3""3^2""5^3

Answer»


ANSWER :35
11699.

Sum of the series sum_(k=0)^(n)""^(n)C_(k)(-1)^(k)1/(a_(k)) where a_(k)=sum_(i=0)^(k)""^(k)C_(i)b_(i) where b_(i)=sum_(j=0)^(i)""^(i)C_(j)((-2)/3)^(j) is

Answer»

`1/(2^(N))`
`1/(3^(n))`
`1/(4^(n))`
`(3/4)^(n)`

ANSWER :C
11700.

Let f (x) =2-|x-3| , 1 le x le 5 andfor rest of the values f (x) can be obtained by unsing the relation f (5x)=alpha f (x) AA x in R.The vlaue of f (2007), taking alpha =5, is :

Answer»

1118
2007
1050
132

Answer :A