InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 11653. |
Let f(n) =[1/3 + (3n)/100]n,whre [x] denotes the greatest integer less than or equal to x. Then sum_(n=1)^(56) f(n) is equal to |
|
Answer» 689 |
|
| 11654. |
If two vectors are parallel vectors then : |
|
Answer» They MUST be in same direction. |
|
| 11655. |
int (e^(3x) + e^(x))/(e^(4x) -e^(2x)+1)dx = |
|
Answer» `(1)/(4) LOG (e^(4X)- e^(2x) + 1) + C ` |
|
| 11656. |
If alpha,beta,gamma and delta are the equation x^(4)-1 = 0, then the value of(aalpha+b beta+cgamma+ddelta)/(agamma+bdelta+calpha+dbeta)+(agamma+bdelta+calpha+dbeta)/(aalpha+b beta+cgamma+ddelta), is |
|
Answer» `3beta` |
|
| 11657. |
Match th statements given in Column-I with theintervals//union of intervalsgivenin column -II |
|
Answer» |
|
| 11658. |
Let ABC is be a fixed triangle and P be veriable point in the plane of triangle ABC. Suppose a,b,c are lengths of sides BC,CA,AB opposite to angles A,B,C, respectively. If a(PA)^(2) +b(PB)^(2)+c(PC)^(2) is minimum, then point P with respect to DeltaABC is |
|
Answer» centroid `=a[(h-x_(1))^(2)+(k-y_(1))^(2)] +b[(h-x_(2))^(2)+(k-y_(2))^(2)] +c [(h-x_(2))^(2)+(k-y_(3))^(2)]` `= [h^(2)(a+b+c) -2H(ax_(1)+bx_(2)+cx_(3))+(ax_(1)^(2)+bx_(2)^(2)+cx_(3)^(2))]` `+[k^(2)(a+b+c)-2k(ay_(1)+by_(2)+cy_(3))+(ay_(1)^(2)+by_(2)^(2)+cy_(3)^(2))]` which is minimum when ` = (ax_(1)+bx_(2)+cx_(3))/(a+b+c), k =(ay_(1)+by_(2)+cy_(3))/(a+b+c)` So, P is incentre of `DeltaABC`. |
|
| 11659. |
If alpah,beta are the roots of x^2-x+1=0 then the quadratic equation whose roots are alpha^(2015), beta^(2015) is |
|
Answer» `x^2-x+1=0` |
|
| 11660. |
If int(cos^(4)x)/(sin^(4)x)dx=Kcotx+Msin2x+L(x)/(2) + C then |
|
Answer» L = 1 |
|
| 11661. |
Using matrices, solve the following system of linear equations: x-y+z=4,2x+y-3z=0,x+y+z=2 |
|
Answer» |
|
| 11662. |
If a_(1), a_(2) …… a_(n) = n a_(n - 1), for all positive integer n gt= 2, then a_(5) is equal to |
|
Answer» a. 125 |
|
| 11664. |
If the lines ax + ky + 10 = 0, bx + (k + 1) y + 10 = 0 and cx + (k+2)y + 10 = 0 are concurrent, then |
|
Answer» a, B, C are in G.P. |
|
| 11665. |
x(dy)/(dx) - y + x sin ((y)/(x)) = 0 |
|
Answer» |
|
| 11666. |
Identify the type of conic and find centre, foci, vertices, and directices of each of the following: 9x^(2)-y^(2)-36x-6y+18=0 |
|
Answer» |
|
| 11668. |
A=[{:(1,2,2),(2,1,2),(2,2,1):}], then A^(3) - 4A^(2) -6A is equal to |
|
Answer» 0 |
|
| 11669. |
The value of f(0), so that f(x)= (sqrt(a^(2)-ax + x^(2))-sqrt(a^(2) + ax + x^(2)))/(sqrt(a +x)- sqrt(a-x)) becomes continuous for all x, is given by ……….. |
|
Answer» `a sqrta` |
|
| 11670. |
If A =[{:(1,2,3),(3,-2,1),(4,2,1):}] then show that A^(3)-23A - 40 I =0 |
|
Answer» |
|
| 11672. |
Letvec(a),vec(b),vec(c )be unit such thathat(a) + hat(b ) + hat(c ) = vec(alpha)andhat(a).hat(b)=hat(b).hat(c ) . hat(a) = 1/2| (hat(a) xx hat(b)) xx hat(c)|is equal to - |
|
Answer» 0 |
|
| 11673. |
If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi), where [*] denotes the greatest integer function, the number of solutions in the interval (30,40) is ………… . |
|
Answer» |
|
| 11675. |
The value (cos (A+B+C)+cos (A-B-C))/(2 cos (B+C)) |
|
Answer» `COS A` |
|
| 11676. |
There are 10 intermediate stations on a railway line between two particular stations. The number of ways that a train can be made to stop at 3 of these intermediate stations so that no two of these halting stations are consecutive, is |
|
Answer» 56 |
|
| 11677. |
If P (A) = 0.4,P (B | A)= 0.3 and P (B^c | A^c)=0.2. find P(A^c) |
|
Answer» <P> SOLUTION :`P(A^c)=1-P(A)=1-0.4=0.6=6/10=3/5` |
|
| 11678. |
Ifint(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+sin^(2)thetacos^(2)theta))d theta = "cosec"^(_1)(f(theta))+C , then |
|
Answer» `F(THETA)=sin2theta+1` |
|
| 11679. |
Le A = {1,2, 3,4, 5}. Let {1,2,3} and {4, 5} be two equivalence classes of a relation R on A. The number of elements in R is ……………. |
|
Answer» |
|
| 11680. |
Write the negation of the following statement: i. p: for every positive real number x, the number x-1 is also positive. ii. q: All cats scratch. r: For every real number x, either x>1 or x |
|
Answer» |
|
| 11681. |
Consider f(x)=tan^(-1)(2/x),g(x)=sin^(-1)(2/(sqrt(4+x^(2)))) and h(x)=tan(cos^(-1)(sin)), then show that (h(f(x))+h(g(x))={(0,xlt0),(x,xgt0):} |
|
Answer» |
|
| 11682. |
The minimum distance of origin from the plane passing through the point with position vector P and perpendicular to the lineL_(2) is: |
|
Answer» `SQRT14` |
|
| 11683. |
Let A=[{:(7,5), (4, 8):}], B=[{:(4, 3), (7, 5):}] " and "C=[{:(-5, 3), (7, -4):}] IF Tr(S) denotes the trace of a square matrix S then sum_(k=0)^(infty)1/(3^(k))Tr{A(BC)^(k)}= |
|
Answer» `45/2` |
|
| 11684. |
Evaluate{:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =0 |
|
Answer» |
|
| 11685. |
If x+y+z=3,x+2y+3z,x+4y+9z=6," then: "(y,z)equiv |
|
Answer» `(-1,0)` |
|
| 11686. |
If tan^(2)theta, sin^(2)theta are the roots of ax^(2)+bx+c=0 then b^(2)- c^(2) = |
| Answer» Answer :A | |
| 11687. |
If f(x) = (x+2)/(2x+3). Then int(f(x)/(x^(2)))^(1//2)dxis equal to (1)/(sqrt(2))g((1+sqrt2f(x))/(1-sqrt(2f(x))))-sqrt((2)/(3))h((sqrt(3f(x))+sqrt(2))/(sqrt(3f(x)-sqrt(2)))) +C where |
|
Answer» `g(x) = tan^(-1)x, h(x) = LOG |X|` |
|
| 11688. |
IF3x^2 +8xy+5y^2 +14 x+22 y+8is resolvableintotwolinearfactorsthen thefactorsare |
|
Answer» `(2X + 3y+4 )(3X +5Y +2)` |
|
| 11689. |
The orthocenter of triangle whose vertices are A(a,0,0),B(0,b,0) and C(0,0,c) is (k/a,k/b,k/c) then k is equal to |
|
Answer» `(1/a^(2)+1/b^(2)+1/c^(2))^(-1)` Now, `AO BOT BC` Similarly, `a(alpha)=b(beta)=cgamma=k` `THEREFORE alpha=k/a, beta=k/b,gamma=k/c` The plane `x/a+y/b+z/c=1` contains `(alpha,beta,gamma)` `therefore k(1/a^(2)+1/b^(2)+1/c^(2))=1` |
|
| 11690. |
If the line y = x touches the curve y=x^(2)+bx+c at (1, 1), then ………… |
| Answer» Answer :B | |
| 11691. |
Given that lim_(n to oo)sum_(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2+(pi)/(2)-2, then lim_(n to oo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+r^(2))^(m)......(n^(2))^(m)]^(1//n) is equal to |
|
Answer» `2^(m)E^(m((PI)/(2)-2))` |
|
| 11692. |
Let P(x) =x^(2)+ 1/2x + b and Q(x) = x^(2) + cx + dbe two polynomials with real coefficients such that P(x) Q(x) = Q(P(x)) for all real x. Find all the real roots of P(Q(x)) =0. |
|
Answer» |
|
| 11693. |
(i) If a, b, c, are in A.P. then show that ax….+….by +c=0 passes through a fixed point. Find then fixed point. (ii)If 9a^(2)+16b^(2)-24ab-25c^(2)=0, then the family of straight lines ax+by+0 is concurrent at the point whose co-ordinates are given by "________" (iii) If 3a+4b-5c=0, then the family of straight lines ax+by+c=0 passes through a fixed point. Find the coordinates of the point. |
|
Answer» Solution :(i) a,b,c are in A.P. `impliesa-2b+c=0` Comparing the given equation `ax+by+c=0` with `a-2b+c=0` we find that the straight line `ax+by6+c=0` passes through the fixed point `(1,-2).` (ii) We have, `9a^(2)+16b^(2)-24ab-25c^(2)=0` `implies(3a-4b)^(2)-(5c)^(2)=0` `implies(3a-4b+5c)(3a-4b-5c)=0` `implies((3)/(5)a-(4)/(5)b+c)((-3)/(5)a+(4)/(5)b+c)=0` `implies` The FAMILY of lines `ax+by+c=0` is either concurrent at `((3)/(5),(-4)/(5))or (-(3)/(5),(4)/(5))` (III) We have, `3a+4b-5c=0` `implies-(3)/(5)a-(4)/(5)b+c=0` `implies` The given family of lines `ax+by+x=0` passes through the fixed point `((-3)/(5),(-4)/(5)).` |
|
| 11694. |
A box contains tickets numbered from 1 to 20. If 3 tickets are drawn one by one with replacement then the probability of getting prime number exactly 2 times is |
|
Answer» `(36)/(125)` |
|
| 11695. |
Show that the relation R is R defined as R = {(a,b) : a le b} is reflexive and transitive but not symmetric. |
|
Answer» |
|
| 11696. |
Find the order and degree (if defined) of the following differential equations. ((d^2y)/(dx^2))^2 + cos ((dy)/(dx)) = 0 |
| Answer» Solution :The HIGHEST ORDER derivative in the DIFFERENTIAL EQUATION is `(d^2y)/(dx^2)` . `therefore` The order of the differential equation = 2. The DEGREE of the differential equation is not defined. | |
| 11697. |
For positive l, m and n, if the planes x = my + mz, y =1z+ nx, z=mx+ 1y intersect in a straight, line, then: 1, m and n satisfy the equation: |
|
Answer» `1 ^(2) + m^(2) + N^(2) =2` |
|
| 11699. |
Sum of the series sum_(k=0)^(n)""^(n)C_(k)(-1)^(k)1/(a_(k)) where a_(k)=sum_(i=0)^(k)""^(k)C_(i)b_(i) where b_(i)=sum_(j=0)^(i)""^(i)C_(j)((-2)/3)^(j) is |
|
Answer» `1/(2^(N))` |
|
| 11700. |
Let f (x) =2-|x-3| , 1 le x le 5 andfor rest of the values f (x) can be obtained by unsing the relation f (5x)=alpha f (x) AA x in R.The vlaue of f (2007), taking alpha =5, is : |
|
Answer» 1118 |
|