Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

3101.

A plane is parallel to the vectors hati+hatj+hatk and 2hatk and another plane is parallel to the vectors hati+hatj and hati-hatk. The acute angle between the line of intersection of the two planes and the vector hati-hatj+hatk is

Answer»

`(PI)/6`
`(pi)/4`
`(pi)/3`
`(pi)/2`

Solution :NA
3102.

[d/dx(sin^-1 x + cos^-1 x)]

Answer»

1
`pi/2`
0
x

Answer :C
3103.

Let=cos x sin 2x , then-

Answer»

min `f(X)GT-(7)/(9),x in[-pi,pi]`
min `f(x)gtgt-(9)/(7),x in [ -pi,pi]`
min `f(x)gt-(1)/(8) x in [-pi,pi]`
min `f(x)gt-(2)/(9), x in[pi,pi]`

Answer :A,B
3104.

Let sin alpha, cos alphabe the roots of the equation x^(2)-bx+c=0. Then which of the following statements is/are correct?

Answer»

`c LE (1)/(2)`
`B le sqrt(2)`
`c GT (1)/(2)`
`b gt sqrt(2)`

Answer :a,b
3105.

If vec(u),vec(v),vec(w) are the non-coplanar vectors, then (vec(u)+vec(v)-vec(w)).[(vec(u)-vec(v))xx(vec(v)-vec(w))]=

Answer»

`VEC(U).(vec(V)xxvec(W))`
`vec(u).(vec(w)xxvec(v))`
`3vec(u).(vec(v)xxvec(w))`
0

Answer :A
3106.

Identify the False statements

Answer»

<P>[p`VV`(~Q)]~=(~p)`vv`q
[p`vv`q]`vv`(~p) is a TAUTOLOGY
[p`^^`q]`^^` (~p) is a CONTRADICTION
~[p`vv`q]~=(~p)`vv`(~q)

Answer :D
3107.

If (1 - p) is a root of quadratic equation x^(2) + px + (1- p)=0, then its roots are

Answer»

0,1
-1, 2
0, -1
-1, 1

Answer :C
3108.

Give the solution of x" sin"^(2)(y)/(x)dx =y dx -x dy which passes through the point(1, (pi)/(4)).

Answer»


ANSWER :1+log X
3109.

Select the correct answer:Degree of differential equation(d^2y/(dx^2))^2+(dy/(dx))^3+2y=0

Answer»

`1`
`2`
`0`
`3`

ANSWER :B
3110.

The value of lim_(nto oo){3sqrt(n^2-n^3)+n}, is

Answer»

`(1)/(3)`
`(-1)/(3)`
`(2)/(3)`
`(-2)/(3)`

SOLUTION :We have,
`lim_(xto oo) {3sqrt(N^2-n^3)+n}`
` rArr l=lim_(NTO oo) {n 3sqrt((1)/(n)-1)+n}=lim_(n to oo) n{((1)/(n)-1)^(1//3)+1^(1//3)}`
` because a+b=(a^3+b^3)/(a^2-ab+b^2)`
`therefore l=lim_(nto oo) n[(((1)/(n-1)+1))/(((1)/(n)-1)^(2//3)-((1)/n-1)^(1//3)+1)]`
`therefore l=lim_(nto oo) n[(1)/(((1)/(n)-1)^(2//3)-((1)/n-1)^(1//3)+1)]=(1)/(3)` .
3111.

If f(x)=sin^(-1)[2^(x+1)/(1+4^(x))]," then "f^(1)(0)=

Answer»

`(2log2)/5`
`2log2`
`(4log2)/5`
`LOG2`

3112.

Solve (x - 1)^n =x^n, where n is a positive integer.

Answer»


ANSWER :`THEREFORE` The solutions of the EQUATION are `1/2[1+icot(KPI)/(n)]`
k=1,2,…......,(n-1)
3113.

Find the equation of plane passing through the intersection of the planes.3x-y + 2z-4 = 0,x+y+z+2=0andPoint (2, 2, 1)

Answer»


Answer :`19x - 9y + 12z -32=0` is the REQUIRED EQUATION of PLANE.
3114.

The midpoint of the chord intercepted by the circle x^(2) +y^(2) =16 on the line through the point (1,-2) and (0,-1) is

Answer»

` (-(1)/(2) , -(1)/(2))`
` ( (1)/(2) , ( 3)/(2)) `
` ( -(1)/(4) , -( 1)/(4))`
` ((3)/(4) ,(1)/(4)) `

ANSWER :A
3115.

Let O be the circumcentre and H be the orthocentre of an acute angled triangle ABC. If A gt B gt C, then show that Ar (Delta BOH) = Ar (Delta AOH) + Ar (Delta COH)

Answer»

SOLUTION :
From the figure, we have
`ANGLE OAH = A - 2(90^(@) - B) = B - C`
Similarly, `angle OBH = A - C`
and `angle OCH = A - B`
Also, `AH = 2R cos A, BH = 2R cos B, CH = 2R cos C`
`Ar (Delta AOH) = (1)/(2) (R) (2R cos A) sin (B - C)`
`= R^(2) cos (B + C) sin (C - B)`
`=(R^(2))/(2) (sin 2 C - sin 2B)`
Similarly, `Ar(DeltaBOH) = (R^(2))/(2) (sin 2C - sin 2A)`
and `Ar (Delta COH) = (R^(2))/(2) (sin 2 B - sin 2A)`
Clearly, `AR (Delta AOH) + Ar (Delta COH) = Ar (Delta BOH)`
3116.

If a,b,c,d are the position vectors of A,B,C,D respectively then the volume of the tetrahedron ABCD is

Answer»

`+- (1)/(6) {[a B c] - [a b d] + [a c d] - [b c d]}`
{[a b c] - [a b d] + [a c d] - [b c d]}
`+- (1)/(6) {[b c a] - [c b a] + [a c d] - [b c d]}`
`+- (1)/(8) {[b a c] - [a c d] + [a b d] - [b c d]}`

Answer :A
3117.

A, B, C are three points on a horizontal line through the base O of a pillar OP, such that OA, OB, OC are in A.P. If alpha, beta, gamma the angles of elevation of the top of the pillar at A, B, C respectively are also in A.P. then sin alpha, sin beta, sin gamma are in

Answer»

A.P.
G.P.
H.P.
None of these

ANSWER :B
3118.

Find ((a^(x)-b^(x))^(2))/(a^(x)b^(x))dx(agt0,a!=1,bgt0,b!=1)

Answer»


ANSWER :`(1)/(loga-logb)[((a)/(B))^(X)-((b)/(a))^(x)]-2x+c`
3119.

Find the nature of the roots of x^(2)-x+1=0

Answer»


Answer :roots are IRRATIONAL NUMBERS more over conjugate SURDS
3120.

Find the latus rectum of the parabola 3y^2 =5x

Answer»
3121.

int_(0)^(pi) cos^(5) x dx=

Answer»

1
0
`1//7`
`PI`

ANSWER :B
3122.

Solve the following differential equations. x(x-1)(dy)/(dx)-y=x^(3)(x-1)^(3)

Answer»


Answer :(i) `(XY)/(x-1) = (x^(5))/(5) - (x^(4))/(4) + c`
(ii) `y(x-1) = x^(2)(x^(2) - x+c)`
3123.

The orthocentre ofthe triangle formed by the lines 2x^(2)+3xy-2y^(2)-9x+7y-5=0 with 4x+5y-3=0 is

Answer»

`(3//5,11//5)`
`(6//5,11//5)`
`(5//6,11//5)`
`(3//5,6//5)`

Solution :The component LINES of given pair of STRAIGHT lines are perpendicular to each other . So , orthocentre is the POINT of interaection of component lines.
3124.

If alpha, betaare the roots of ax^(2)+bx+c=0 (a ne 0)andalpha+h, beta +h are the roots ofpx^(2)+qx +r =0 (p ne 0)then the ratio of the squares of their discriminants is

Answer»

`a^(2):p^(2) `
`a:p^(2)`
`a^(2):p`
`a:2p`

Answer :NONE of the OPTION is CORRECT
3125.

Evalute the following integrals int (1)/(x^(2) - 3x + 2)dx

Answer»


Answer :`INT(1)/((X^(2)+1)sqrt(x^(2)+2))DX`
3126.

Integrate the following functions 1/(1-tanx)

Answer»

Solution :1/(1-tanx) = COSX/(cosx-sinx)
`1/2[((cosx-sinx)-(-sinx-cosx))/(cosx-sinx)]`
=`1/2[1-(-sinx-cosx)/(cosx-sinx)]`
therefore` INT dx/(1-tanx)`
=`1/2 [x-log|cosx-sinx|]+C`
3127.

State the converse, inverse and contrapositive of Sum of two odd integers is even prepositions. Stating it as a conditional, wherever necessary.

Answer»

Solution :If TWO INTEGERS are odd, then their SUM is EVEN.
Con :If the sum of two integers is even, then they are odd.
Inv: If two integers are not odd,then their sum is not even.
CONT: If the sum of two integers is not even then they are not odd.
3128.

If a number of ellipse whose major axis is x - axis and the minor axis is y - axis be described having the same length of the major axis as 2a but a variable minor axis, then the tangents at the ends of their latus rectum pass through fixed points whose distance from the centre is equal to

Answer»

`(1)/(2)" UNITS"`
1 UNIT
`(3)/(2)" units"`
2 units

Answer :B
3129.

Determine whether or not each of the defination of ** given below gives a binary opertion. In the event that ** is not a binary opertion, give justification for this. (i) On Z ^(+), define ** by a ** b =a -b (ii) On Z ^(+), define ** by a **b b =ab (iii) On R, define ** by a **b =ab ^(2) (iv) On Z ^(+), define ** by a ** b = |a-b| (v) On Z ^(+), define ** by a ** b =a

Answer»


ANSWER :(i) NO (ii) YES (iii) es (IV) Yes (V) Yes
3130.

Solve for x:log_(b)(x+5)=log_(b)x+log_(b)5.

Answer»

Solution :`log_(b)X+log_(b)5=log_(b)(5x)`
THEREFORE, `LOG(x+5)=log(5x)`, which is true only when :
`x+5=5x`
`5=4x`
`x=(5)/(4)`
3131.

Graph of ln S^(@) ...........

Answer»


SOLUTION :At same TEMPERATURE `S_(B)^(@) gt S_(A)^(@) implies (K_(H))_(A) gt (K_(H))_(B)`
3132.

The locus of the foot of the perpendicular drawn from the origin to any chord of the circle x^(2)+y^(2)+2gx+2fy+c=0 which substents a right angle at the origin is

Answer»


Answer :LOCUS of `P(x_1, y_1) is 2( X^(2) +y^(2)gx+ fy ) + c=0 `
3133.

Lt_(ntooo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n)+......+sec^(2)""(npi)/(4n)]=

Answer»


ANSWER :`(4)/(PI)`
3134.

If the sides of a cylic aqudrilateral are 3,3,4,4 shwo that a circle can be inscribed in it.

Answer»


ANSWER :satisfy CONDITION (V) or a CIRCLE can be INSCRIBED.
3135.

Evaluate the integrals by using substitution int_(0)^(1)((2x)/(1+x^(2)))dx

Answer»
3136.

If I_(n)= int x^(n) e^(ax) then I_(n) - (x^(n) e^(ax))/(a ) =

Answer»

`(N)/(a) I_(n- 2)`
`(n)/(a) I_(n-2)`
`(n)/(a) I_(n- 1)`
`- (n)/(a) I_(n-1)`

ANSWER :D
3137.

Let f(x) =x^(13)-2x^(12)+3x^(11)+…+13x+14 and alpha=cos(2pi)/15+sin(2pi)/(15). If N=f(alpha).f(alpha^(2))……..f(alpha^(14)), then

Answer»

NUMBER of DIVISORS of N is 196 .
number of divisors of N is 256
number of divisors of N which are perfect squares is 49
number of divisors of N which are perfect CUBES is 16

Answer :A::C
3138.

In the following figure, identify equal vector

Answer»

SOLUTION :`vecd=vecb`, because the have the same MAGNITUDE and same DIRECTION.
3139.

Three non - zero vectors bar(a),bar(b),bar(c) are complanar if and only if there exist scalars x,y,z, not all zero simultaneously such that xbar(a)+ybar(b)+zbar(c)=bar(0).

Answer»

Solution :Let `bar(a),bar(b),bar(c)` be coplanar vectors. Then any ONE of them, say `bar(a)`, will be the linear combination of `bar(b)andbar(c)`.
`:.` there EXIST scalars `alphaandbeta` such that
`bar(a)=alphabar(b)+betabar(c)`
`:.(-1)bar(a)+alphabar(b)+betabar(c)=bar(0),i.e.,xbar(a)+ybar(b)+zbar(c)=bar(0)`
where `X=-1,y=ALPHA,z=beta` which are not all zero simultaneously.
Conversely : Let there exist scalars x,y,z not all zero such that
`xbar(a)+ybar(b)+zbar(c)=bar(0)`. . . (1)
Let `x!=0`, then divide (1) by s, we GET
`i.e.,bar(a)+((y)/(x))bar(b)+((z)/(x))bar(c)=bar(0)`
`:.bar(a)=(-(y)/(x))bar(b)+(-(z)/(x))bar(c)`
`i.e.,bar(a)=alphabar(b)+betabar(c)`, where `alpha=(-y)/(x)andbeta=(-z)/(x)` are scalars.
`:.bar(a)` is the linear combination of `bar(b)andbar(c)`.
Hence, `bar(a),bar(b),bar(c)` are coplanar.
3140.

if f(x){{:( e^(x^(2)+x), x gt0),( ax+b, xle0):}is differentiable at x=0 , then

Answer»

a=1,b=-1
a=-1,b=1
a=1,b=1
a=-1,b=-1

Answer :C
3141.

Find the area of the triangle formed by positive y-axis the normal and the tangent to the circle (x^(2)+y^2)=4 at (1,sqrt(3)).

Answer»


Answer :`2/(sqrt(3))` SQ. UNITS.
3142.

If A, B and C are three exhaustive and mutually exclusive events such that P(B) = 3/2P(A) and P( C) = 1/2P(B), then P(AcupC) is

Answer»

`3/13`
`6/13`
`7/13`
`10/13`

ANSWER :C
3143.

Which of the following plots represents an ideal binarymixture ?

Answer»

Plot of `P_("total") "v/s" X_(B)` is linear (`X_(B)`= MOLE fraction of 'B' in LIQUID phase).
Plot of `P_("total")"v/s"Y_(A)` is linear (`Y_(B)` = mole fraction of 'A' in VAPOUR phase)
Plot of `1/(P_("total"))"v/s "Y_(A)` is linear
Plot of `1/(P_("total"))"v/s"Y_(B)` is non linear

Answer :A::C
3144.

If P(x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that P(0)=0, P(1)=1, and P'(x) gt0AAx in [0, 1], then

Answer»

`S=phi`
`S=ax+(1-a)x^(2)AA a in (0, 2)`
`S=ax+(1-a)x^(2)AA a in (0, oo)`
`S=ax(1-a)x^(2)AA a in (0, 1)`

Answer :B
3145.

Let a=a_(1) hati+a_(2) hatj+a_(3) hatk Assertion (A) The identity |veca xx hati|^(2)+|veca xx hatj|^(2)+|veca xx hatk|^(2)=2|veca|^(2) holds for veca. Reason (R) veca xx hati=a_(3)hatj-a_(2) hatk, vec a xx hatj=a_(1) hatk-a_(3) hati, veca xx hatk=a_(2) hati-a_(1)hatj

Answer»

Both A and R are true and R is the CORRECT EXPLANATION of (A)
Both A and R are true and R is not the correct explanation of (A)
(A) is true but (R) is FALSE
A is false but R is true

Answer :A
3146.

Find the amount of heat released by an alternating sinusoidal current I= I_(0) sin ((2pi)/(T) t- varphi). during a cycle T in a conductor with resistance R.

Answer»


ANSWER :`0.12 RT I_(0)^(2)`
3147.

Discuss maxima/minima of f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2))

Answer»

SOLUTION :`F'(x) = (1 - x^(2)sec^(2)x)/((1 + x TAN x)^(2))`
`= (sec^(2)X (cos x + x)(cos x - x))/((1 + x tan x)^(2))`
Now the sign of the derivative DEPENDS on the factor 'cos x - x' only.
To check the sign of 'cos x - x', we draw the graphs of y = x and y = cos x.

Clearly, `f' (x_(0)) = 0`
and `f'(x) gt 0 AA x in (0, x_(0))`
`f'(x) lt 0 AA x in (x_(0), pi//2)`
Thus, `x = x_(0)` is the only point of maxima for y = f(x).
3148.

Evaluate int (1)/((2x + 3)sqrt(4x + 5)) dx

Answer»


ANSWER :`TAN^(-1)+CTAN^(-1)SQRT(4x+5)`
3149.

The probability that a vowel selected at random from an English book is 'u' is

Answer»

`(5)/(26)`
`(1)/(5)`
`(4)/(5)`
`(21)/(26)`

Answer :B
3150.

Find thecoordinates offoot ofperpendicularand thelengthofthe perpendiculardrawnfrom thepointP(5,4,2)to the linethis line .

Answer»

Solution :The vector equation fo thegiven LINE is
`vec( R) =(-hat(i) +3hat(J) +hat(k)) + lambda (2hat(i) +3hat(j) -hat(k))`

Clearlyitpassesthrough the point
(-1,3,1) andit hasdirectionrations
2,3,-1
So, itsCartesianequationsare
`(x+1)/(2) =(y-3)/(3)=(z-1)/(-1)=r` (say)
Thegeneral pointon thisline is (2r -1, 3r+3,-r+1)
LetN be thefootof theperpendiculardrawn from thepoint
`P(5,4,2)` on the givenline.
Thenthis POINTIS `N(2r-6,3r+3-r +1)`forsomefixedvalue of r.
D.r' s of PN are(2r-6 ,3r-1 ,-r -1)
D.r's ofthegiven lineare 2,3,-1
Since PNis perpendicularto the given line (i) we have
`2(2r-6)+3(3r-1)-1,(-r-1) =0 rArr 14r =14 rArr r =1`
So , thepointN is givenbyy N(1,6,0)
Hencethe foot of theperpendicularfrom thegivenpointP(5,4,2) on thegivenline isN(1,6,0)
Let `Q(alpha , beta, gamma)` be theimageof P(5,4,2) in thegiven line .
thenN(1,6,0)is themidpoint of PQ.
`:.(5+alpha)/(2)=1, (4+beta)/(2) " 6and" (2+gamma)/(2)=0 rArralpha =-3 , beta =8 " and" gamma =-2`
Hencethe imageof P(5,4,2)in thegivenlineis Q(-3,8-2)