InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
1). 42002). 41613). 41404). 4102 |
|
Answer» follow BODMAS rule to solve this question, as per the order given below, Step-1-Parts of an equation ENCLOSED in 'Brackets' must be solved first, Step-2-Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. The given expression is: $(12\; \TIMES 35\% \;of\;1000 - \sqrt[3]{{117649}} \div 7 = a + 32)$ $(\Rightarrow 12 \times \frac{{35}}{{100}} \times 1000 - 49 \div 7 = a + 32)$ ⇒ 12 × 350 - 7 = a + 32 ⇒ 4200 - 7 = a + 32 ⇒ 4193 = a + 32 ⇒ a = 4193 – 32 ⇒ a = 4161 |
|
| 2. |
Find the square root of the surd 12 + 6√3.1). (3 - √3)2). (3 + 3√3)3). (3 - 3√3)4). (3√3) |
|
Answer» FORMULA: (a + b)2 = a2 + b2 + 2ab The given surd is: 12 + 6√3 Let us write the surd as (a + √b)2 Expansion of (a + √b)2 is given as: (a + √b)2 = a2 + b + 2a√b----------(1) By comparing 2a√b TERM of this EQUATION with that of the given surd, we get a = 3 and b = √3 So, we can write the given expression as: (3 + √3)2 Thus the square root of the given surd is: (3 + √3) |
|
| 3. |
98.8 × 4032 ÷ 27.89% of 599 = 16 × 339.7 ÷ 17.2 + ? + 80.11). 18002). 19003). 22004). 2000 |
|
Answer» Follow BODMAS rule to SOLVE this question, as PER the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 98.8 ×$ 4032 ÷ 27.89% of 599 = 16 ×$ 339.7 ÷ 17.2 + ? + 80.1 Taking Approximate values as, 98.8 ≈ 99, 27.89 ≈ 28, 599 ≈ 600, 339.7 ≈ 340, 17.2 ≈ 17, 80.1 ≈ 80 ⇒ 99 ×$ 4032 ÷ 28% of 600 = 16 ×$ 340 ÷ 17 + ? + 80 ⇒ 99 ×$ 4032 ÷ 0.28 ×$ 600 = 16 ×$ 20 + ? + 80 ⇒ 99 ×$ 24 = 320 + ? + 80 ∴ ? = 2000 |
|
| 4. |
1). 14502). 14803). 14904). 1470 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be SOLVED first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 2520 ÷ 62 × 8.5 – √5776 + 312 = ? ⇒ 2520 ÷ 36 × 8.5 – 76 + 961 = ? Applying BODMAS Rule; ⇒ 70 × 8.5 – 76 + 961 = ? ⇒ 595 – 76 + 961 = ? ∴ ? = 1480 |
|
| 5. |
1). 42/252). 51/253). 63/504). 82/75 |
|
Answer» $(\begin{array}{l}\frac{2}{5} \TIMES \frac{4}{5} - \frac{8}{5} \div \frac{3}{5} + \frac{6}{5} \times \frac{9}{5} \div \frac{3}{5} = \;?\\ \Rightarrow \frac{2}{5} \times \frac{4}{5} - \frac{8}{5} \times \frac{5}{3} + \frac{6}{5} \times \frac{9}{5} \times \frac{5}{3} = \;?\end{array})$ $(\begin{array}{l} \Rightarrow \frac{8}{{25}} - \frac{8}{3} + \frac{{18}}{5} = \;?\\ \Rightarrow \frac{{98}}{{25}} - \frac{8}{3} = \;?\end{array})$ ∴ ? = 94/75 |
|
| 6. |
105.01% of 7498.97 - 3/7% of 5739.9 + 20.15 = ?1). 77502). 79503). 78704). 8000 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 105.01% of 7498.97 - 3/7% of 5739.9 + 20.15 = ? Taking the APPROXIMATE VALUES as, 105.01 ≈ 105, 7498.97 ≈ 7500, 5739.9 ≈ 5740, 20.15 ≈ 20 105% of 7500 - 3/7% of 5740 + 20 = ? ⇒ 7875 - 24.6 + 20 = ? ∴ ? = 7870.4 ≈ 7870 |
|
| 7. |
(0.1458 ÷ 0.2)1/3 ÷ (102.4 × 10)1/5 × (0.5 × 4)5 + 0.9 = [(9)? + 3] ÷ 10 1). 12). 03). -24). -1 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, (0.1458 ÷ 0.2)1/3 ÷ (102.4 × 10)1/5 × (0.5 × 4)5 + 0.9 = [(9)? + 3] ÷ 10 ⇒ (0.729)1/3 ÷ (1024)1/5 × (2)5 + 0.9 = [(9)? + 3] ÷ 10 ⇒ 0.9 ÷ 4 × 32 + 0.9 = [(9)? + 3] ÷ 10 ⇒ 7.2 + 0.9 = [(9)? + 3] ÷ 10 ⇒ 81 = [(9)? + 3] ∴ ? = -1 |
|
| 8. |
95.9753.5 ÷ 12.0013.5 × 7.9981.5 ÷ 63.9792 = ?1). 642). 183). 964). 321 |
|
Answer» Follow BODMAS rule to solve this question, as PER the order given below, Step-1 – Parts of an equation ENCLOSED in 'Brackets' must be SOLVED FIRST, and in the bracket, the BODMAS rule must be followed, Step-2 – Any mathematical 'Of' or 'Exponent' must be solved next, Step-3 – Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4 – Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. 95.9753.5 ÷ 12.0013.5 × 7.9981.5 ÷ 63.9792 = ? (? We have to find the approximate value, so we’ll take the values of 95.975 as 96, 12.001 as 12, 7.998 as 8 and 63.979 as 64) ⇒ 963.5 ÷ 123.5 × 81.5 ÷ 642 = ? $(\Rightarrow \;{\left( {\frac{{96}}{{12}}} \right)^{3.5}} \times \frac{{{8^{1.5}}}}{{{{\left( {{8^2}} \right)}^2}}}\; = \;?)$ $(\Rightarrow \;{8^{3.5}} \times \frac{{{8^{1.5}}}}{{{8^4}}}\; = \;?)$ By using these laws of indices: ⇒ 83.5 + 1.5 – 4 = 81 = 8 |
|
| 9. |
\(\sqrt {\sqrt {10000\; \div 4} + \sqrt {961} } = {\left( ? \right)^2}\)1). 812). 33). 65614). 9 |
|
Answer» Follow BODMAS rule to solve this question, as PER the order given below, Step-1- Parts of an equation ENCLOSED in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated Given Expression is, $(\sqrt {\sqrt {10000\; \div 4} + \sqrt {961} } = {\LEFT( ? \right)^2})$ $(\Rightarrow \sqrt {\sqrt {2500} + \sqrt {961} } = {\left( ? \right)^2})$ $(\Rightarrow \sqrt {\sqrt {{5^2}\; \times \;{{10}^2}} + \sqrt {{{31}^2}} } = {\left( ? \right)^2})$ $(\Rightarrow \sqrt {50 + 31} = {\left( ? \right)^2})$ $(\Rightarrow \sqrt {81} = {\left( ? \right)^2})$ ⇒ 9 = (?)2 ⇒ ? = √9 ⇒ ? = 3 |
|
| 10. |
1). 62). 0.63). 0.0064). 0.06 |
|
Answer» $( \frac{{489.1385\; \times \;0.0493\; \times \;1.966}}{{0.0873\; \times \;92.581\; \times \;99.749}}\; = \;?)$ Follow BODMAS rule to solve this question, as per the ORDER given below: Step-1: Parts of an equation ENCLOSED in 'Brackets' must be solved FIRST, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Here, 489.1385 ≈ 489 0.0493 ≈ 0.05 1.966 ≈ 2 0.0873 ≈ 0.09 92.581 ≈ 92.6 99.749 ≈ 100 Then, given EXPRESSION will become $(\frac{{489\; \times \;0.05\; \times \;2}}{{0.09\; \times \;92.6\; \times \;100}} \approx \;?)$ ⇒ ? ≈ 0.06 |
|
| 11. |
\(\sqrt {1200} \; + \;\frac{{3.001}}{{4.987}}\) of 1899.992 = ?1). 25002). 12303). 11744). 1525 |
|
Answer» $(\sqrt {1200} \; + \;\frac{{3.001}}{{4.987}}\;)$ of 1899.992 = ? Follow BODMAS rule to solve this question, as per the ORDER given below: Step-1: Parts of an equation ENCLOSED in 'Brackets' must be solved FIRST, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. We can write the given values as: √1200 ≈ 20 × 1.7 = 34 3.001 ≈ 3 4.987 ≈ 5 1899.992 ≈ 1900 Therefore, the given expression will be ⇒ ? = 34 + $(\frac{3}{5})$ × 1900 ⇒ ? = 1174 |
|
| 12. |
The price of a commodity decreased by 10% each year. If the present price is Rs. 1000. Then the % decrease in price after 3 years is:1). 19%2). 21.7%3). 27.1 %4). 30% |
|
Answer» Given, price of a COMMODITY decreased by 10% each year. The present price is RS. 1000. Price after 1 year = 1000 – 10% of 1000 = 0.9 × 1000 = Rs. 900 Price after 2 years = 900 – 10% of 900 = 0.9 × 900 = Rs. 810 Price after 3 years = 810 – 10% of 810 = 0.9 × 810 = Rs. 729 Total DECREASE in price = 1000 – 729 = Rs. 271 $(\% \;decrease\;in\;3\;years = \frac{{271}}{{1000}} \times 100\% = 27.1)$ |
|
| 13. |
212 + 88 × 105 ÷ ? – 104 = 773 – 1521). 482). 163). 244). 28 |
|
Answer» 212 + 88 × 105 ÷ ? – 104 = 773 – 152 ⇒ 212 + 88 × 105 ÷ ? – 104 = 773 – 225 ⇒ 88 × 105 ÷ ? = 773 – 225 + 104 – 212 ⇒ 88 × 105 ÷ ? = 440 ⇒ ? = (88 × 105) ÷ 440 ⇒ ? = 105 ÷ 5 ⇒ ? = 21 |
|
| 14. |
1). 1752). 2603). 1604). 253 |
|
Answer» ⇒ ? 2 = (374562 × 64)/777 ⇒ ? = √(30851.95) ⇒ ? ≈ 175 |
|
| 15. |
1). 2022). 2183). 2334). 227 |
|
Answer» The GIVEN EXPRESSION: $(\frac{{208}}{{13}} \times \frac{{17}}{{16}} \times ? = 4046)$ $(= \frac{{13}}{{13}} \times 17 \times ? = 4046)$ = 17 ×? = 4046 = ? = 238 |
|