InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
A ceiling fan is marked Rs.1940 cash or for Rs. 420 cash down payment followed by three equal monthly instalments. If the rate of interest charged under the instalment plan is 16% per annum, find the monthly instalment. |
|
Answer» Market price=1940Rs Down payment=420Rs Let monthly installment=xRs Total price=(3x_420)Rs Intersect=(3x+420)-1940 (3x-1520)Rs Buyer owes to seller in 1 month=1520Rs Buyer owes to sellers in 2 months=1520-x buyer owes to sellers in 3 months=1520-2x total amount=4560-3x Rate =16% Interest=(P*R*T)/100 (3x-1520)=(4560-3x)*16/100 (3-1520)*75=(4560-3x) 228x=1520(3+75) x=520Rs. |
|
| 2. |
Find the value of x : `log_x 0.001 = -3` |
|
Answer» `log_x(0.001) = -3` `=>log(0.001)/logx = -3` `=> log(0.001) = -3logx` `=> log(0.001) = logx^-3` `=>x^-3 = 0.001` `=>x^-3 = 10^-3` `=>x =10` |
|
| 3. |
Show that `0. 2353535. . .=0. 2 bar 35`can be expressed in the form `p/q`, where p and q are integers and `q!=0`. |
|
Answer» `x= 0.2 bar35` multiply by 10 `10x= 2.bar 35` eqn(1) multiply b 100 `1000x= 235.bar35` eqn(2) subtracting eqn (2)- (1) `990x = 233` `x= 233/990` answer |
|
| 4. |
Express the following in the form `P/q` where p and q are integers and `q ne 0.` (i) 0.2 , (ii) 0.888…. , (iii) `5.bar2` (iv) `0. bar(001)` , ( v) 0.2555…. ,(vi) `0.1bar(34)` (vii) 0.00323232….. ,(vii) 0.404040… |
|
Answer» Let `x=0.2 =2/10 -1/5` (ii) Let x=0.888……. On multiplying both sides of Eq.(i) by 10 we, get 10 x. 8.888……. On subtracting Eq. (i) from Eq. (ii),we get 10x-x=(8.88) - (0.888) 9x=8 `x=8/9` (iii) Let `x=5.bar2=5.222.... ` On multiplying both sides of Eq. (i) by 10, we get 10x=52.222...... On subtracting Eq. (i) from Eq. (ii) , we get 10x-x=(52.222.....)-(5.222......) 9x =47 `x=47/9` (v) Let `x=0.bar(001)` `x=0.bar(001) = 0.001001` On multiply both sides of Eq. (i) by 1000, we get 1000x=001.001..... On subtrating Eq. (i) from Eq. (ii) we, get `1000x-x=001.001 .... -(0.001001....)` 999x = 001 `x=1/999` Let x= 0.2555...... On multplying both sides of Eq. (i) by 10, we get 10x=2.555.... On multiplying both sides of Eq. (ii) by 10, we get 100x=25.55...... On subtracting Eq. (ii) from Eq. (iii) , we get 100x-10x=25.55...-(2.555...) 90x=23 `x=23/90` (vi) Let `x= bar(134)` `x=0 bar(134)= 0.13434......` On multiplying both sides of Eq. (i) by 10, we get 10x=13434......... On multplying both sides of Eq. (ii) by 100 , we get 1000x= 134.3434......... On subtracting Eq. (ii) from Eq. (iii) we, get 100x-10x= 134.34..... -(1.3434....) 990x=133 `x=133/990` (vii) Let x= 0.00323232 On Multiplying both sides of Eq. (i) by 100 we get 100x = 0.3232...... On multiplying both sides of Eq. (ii) by 100 , we get 1000x=32.3232......... On subtracting Eq. (ii) [from Eq. (iii) we get 1000x-100x=32.32 ......-0.3232....... 9900x=32 x=`32/9900 = 8/2475` [dividing numerator and denominator by 4] (viii) Let x=0.404040. On multiplying both sides of eq. (i) by 100, we get 100x = 40.4040 On subtracting Eq. (i) from (ii),we get 100x -x =40.4040 ...... - 0.404040....... 99x =40 `x= 40/99` |
|
| 5. |
The value of `1.999`….. In the form of `p/q`, where p and q are integers and `q ne 0`, isA. `(19)/(10)`B. `(1999)/(1000)`C. `2`D. `1/9` |
|
Answer» Correct Answer - C Let `x = 1.999"…."` Now, `10x = 19.999"…."` On subtracting Eq. (i) from Eq. (ii), we get `10x - x = (19.999…) - (1.9999……)` `rArr 9x = 18` `:. x = (18)/(9) = 2` |
|
| 6. |
Express `0.6+0.bar7+0.4bar7` in the form `p/q` where p and q are integers and `q ne 0`. |
|
Answer» Let `x=0.bar7= 0.777` on multiplying both sides of Eq. (i) by 10, we get 10x=7.77….. on subtrracting Eq. (i) from Eq. (ii) we get 10x-x= (7.77…)-(0.77….) 9x=7 `x=7/9` now let `y=0.4bar7 =0.4777…..` on multiplying both sides of Eq. (ii) by 10, we get 10y= 4.777.... on multiplying both sides . Eq . (iv) by 10, we get 100y= 47.777..... on subtracting Eq. (iv) from (v), we get (100y-10y)= (47.777....) - (4.777....) 90y = 43 `43/90` `0.6 + 0.bar7+ 0.4bar7=6/10 + 7/9+43/90` `(54+70+43)/90=167/90` |
|
| 7. |
If `2^(-m)xx(1)/(2^(m))=(1)/(4)` then `(1)/(14)[(4^(m))^(1//2)+((1)/(5^(m)))^(-1)]`=_______A. `(1)/(2)`B. 2C. 4D. `(-1)/(4)` |
|
Answer» Correct Answer - A Find the value of m. |
|
| 8. |
If `m` and `n` are positive integers, then for a positive number `a, {root(m)((root(n)(a)))}^(mn)`=_______A. `a^(mn)`B. aC. `a^(m//n)`D. 1 |
|
Answer» Correct Answer - B Recall the laws of radicals |
|
| 9. |
MNOP is a parallelogram. Q and R are point on sides MN and ON respectively. `(trianglePRM)=12cm^2`, find `ar(trianglePOQ)` |
|
Answer» `Delta PRM` and parallelogram `MNOP` have same base and `R` is a point on side `ON` of the parallelogram. `:. ar(MNOP) = 2**ar(PRM) = 2**12 = 24cm^2` Now, `Delta POQ` and parallelogram `MNOP` have same base `PO` and `Q` is a point on side `MN` of the parallelogram. `:. ar(MNOP) = 2**ar(DeltaPOQ)` `=> ar (Delta POQ) = 24/2 = 12cm^2` |
|
| 10. |
If `a=(3+sqrt5)/2` then find the vaule of `a^(2)+1/(a^(2))` |
|
Answer» `given , a=(3+sqrt5)/2` `1/a=2/(3+sqrt5)=2/(3+sqrt5)xx(3-sqrt5)/(3-sqrt5)` [multiplying numerator and denominator by `3-sqrt5`) `(6-2sqrt5)/(3^(2)-(sqrt5)^(2)) " " ["using identity" , (a-b)(a+b)=a^(2)-b^(2)]` `(6-2sqrt5)/(9-5)=(6-2sqrt5)/4` `1/a=(2(3-sqrt5))/4=(3-sqrt5)/2` `a^(2)+1/(a^(2))a^(2)+1/a^(2)+2-2=(a+1/a)^(2)-2" " ["adding and subtarcting2"]` `((3+sqrt5)/2+(3-sqrt5)/2)^(2)-2 " " ["from Eqs. (i)and (ii)"]` `(6/2)^(2)-2=(3)^(2)-2=9-2=7` |
|
| 11. |
The following number of goals were scored by a team in a series of 10 matches 2, 3, 4, 5, 0 1, 3, 3, 4, 3 Find the mean, median and mode of these scores. |
|
Answer» First we arrange scores in ascending order. Scores in ascending order are `0,1,2,3,3,3,3,4,4,5.` `:.` Mean of the scores ` = (0+1+2+3+3+3+3+4+4+5)/10 = 28/10 = 2.8` Median will be the mean of `(10/2)^(th) and (10/2+1)^(th)` terms. `:.` Median `= (T_5+T_6)/2 = (3+3)/2 = 3` Mode is `3` as it has maximum frequency and appeared `4` times in the given data. |
|
| 12. |
If `x=(sqrt3+sqrt2)/(sqrt3-sqrt2)andy=(sqrt3-sqrt2)/(sqrt3+sqrt2)` then find the value of `x^(2)+y^(2)` ? |
|
Answer» `given , a=(3+sqrt5)/2` `1/a=2/(3+sqrt5)=2/(3+sqrt5)xx(3-sqrt5)/(3-sqrt5)` [multiplying numerator and denominator by `3-sqrt5`) `(6-2sqrt5)/(3^(2)-(sqrt5)^(2)) " " ["using identity" , (a-b)(a+b)=a^(2)-b^(2)]` `(6-2sqrt5)/(9-5)=(6-2sqrt5)/4` `1/a=(2(3-sqrt5))/4=(3-sqrt5)/2` `a^(2)+1/(a^(2))a^(2)+1/a^(2)+2-2=(a+1/a)^(2)-2" " ["adding and subtarcting2"]` `((3+sqrt5)/2+(3-sqrt5)/2)^(2)-2 " " ["from Eqs. (i)and (ii)"]` `(6/2)^(2)-2=(3)^(2)-2=9-2=7` |
|
| 13. |
Find the value of `(sqrt(32)+sqrt(48))/(sqrt(8)+sqrt(12))` |
|
Answer» `(sqrt32+sqrt48)/(sqrt8+sqrt12) = (sqrt(8**4)+sqrt(12**4))/(sqrt8+sqrt12) ` `=(2(sqrt8+sqrt12))/(sqrt8+sqrt12) = 2` `:. (sqrt32+sqrt48)/(sqrt8+sqrt12) = = 2` |
|
| 14. |
Simplify:`4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))` |
|
Answer» `4/((216)^(-3/4))+1/((257)^(-3/4))+2/((243)^(-1/5.))` `4/((6^(3))^(-2/3))+1/((16^(2))^(-3/4))+2/((3^(5))^(-1/5))` `4/(6^(3xx(-2/3)))+1/(16^(2xx(-3/4)))+2/((3^(5))^(-1/5))` `4/(6^(2))+1/(16^(-3/2))+2/(3^(-1))` `4xx6^(2)+16^(3/4)+2xx3^(1)` `4xx36+((4)^(2))^(3//2)+2xx3^(1)` `4xx36+4^(3)+6` `144+64+6=214` |
|
| 15. |
Simplify:`(256)^-(4^(((-3)/2)))` |
|
Answer» `(256)^-(4^(-3/2))=(256)^((-4)^(-3/2)=(256)^((2^(2)))^(-(3)/(2))` `=(256)^(-(2^(2xx-3/2)))=(256)^(-(2^(-3)))` `(2^(8))^((1/2^(3)))=(2^(8))^(-1/8)` `2^(8xx-1/8)=2^(-1=1/2)` |
|
| 16. |
Find the value of `(sqrt(32)+sqrt(48))/(sqrt(8)+sqrt(12))`A. `sqrt2`B. 2C. 4D. 8 |
|
Answer» Correct Answer - B `(sqrt(32)+sqrt(48))/(sqrt8+sqrt(12))=(sqrt(16xx2)+sqrt(16xx3))/(sqrt(4xx2)+sqrt(4xx3)` `(4sqrt2+4sqrt3)/(2sqrt2+2sqrt3)=(4(sqrt2+sqrt3))/(2(sqrt2+sqrt(3)))=2` |
|
| 17. |
L.C.M of two numbers is 48. If two numbers are in ratio 2:3, sum of the two numbers is ? |
|
Answer» Let two number are `2x` and `3x`. Then, their `LCM` will be `6x`. `:. 6x = 48 => x = 8` So, the numbers are `16` and `24`. `:.` Sum of these two numbers ` = 16+24 = 40` |
|
| 18. |
Factorise `a^2x^2+(ax^2+1)x+a` |
|
Answer» `a2x^2+(ax^2+1)x+a` `=a^2x^2+ax^3+x+a` `=ax^3+a^2x^2+x+a` `=ax^2(x+a)+1(x+a)` `=(ax^2+1)(x+a)`, which are the required factors. |
|
| 19. |
`sqrt(7+sqrt(48))`=______ |
| Answer» Correct Answer - `2+sqrt(3)` | |
| 20. |
factorize(i) 4(a+b) - 6`(a+b)^2`(ii)`8(3a-2b)^2 -10(3a-2b) ` |
|
Answer» 1) `4(a+b)-6(a+b)^2` =(a+b)(4-6(a+b)) =(a+b)(4-6a-6b) 2)`8(3a-2b)^2-10(3a-2b)` 2(3a-2b)(4(3a-2b)-5) 2(3a-2b)(12a-8b-5). |
|
| 21. |
`(256)^(0. 16)xx(256)^(0. 09)=?``4`b. `16`c. `64`d. `256. 25`A. 4B. 16C. 64D. 256.25 |
|
Answer» Correct Answer - A `(256)^(0.18)xx(256)^(0.09)=(256)^(16/100)xx(256)^(9/100)` `(256)^((16/100+9/100))` `(256)^(25/100)=(256)^(1/4)` `(4^(4))^(1/4)=4` |
|
| 22. |
Factorize: `x^2+xy-2xz-2yz` |
|
Answer» `x^2 + xy - 2xz -2yz` `= x(x+y) - 2z(x +y)` `= (x+y)(x--2z) ` answer |
|
| 23. |
Factorise `y^2+2y-48` |
|
Answer» `y^2 +2y-48` `y^2 +8x-6y-48` `y(y+8)-6(y+8)` `(y-6)(y+8)` `y= -8,6` answer |
|
| 24. |
Factorize: `12(2x-3y)^2-16 (3y-2x)` |
|
Answer» `12(2x-3y)^2 - 16(3y-2x)` `= 12(2x-3y) + 16(2x-3y)` `= 4(2x-3y)(3(2x-3y)+4)` `= 4(2x-3y)(6x-9y+4)` `= 4(2x-3y)(6x-9y+ 4)` `= (8x-12y)(6x-9y+4)` answer |
|
| 25. |
Which of the following surd is the smallest ? `sqrt(10)-sqrt(5),sqrt(19)-sqrt(14),sqrt(22)-sqrt(17) and sqrt(8)-sqrt(3)`A. `sqrt(10)-sqrt(5)`B. `sqrt(19)-sqrt(14)`C. `sqrt(22)-sqrt(17)`D. `sqrt(8)-sqrt(3)` |
|
Answer» Correct Answer - C Rationalize each binomial. |
|
| 26. |
If `x=(1)/(sqrt(3)+2)`, then `(x+(1)/(x))^(2)`=______A. 16B. 3C. 12D. 6 |
|
Answer» Correct Answer - A Given that `x=(1)/(sqrt(3)+2)` `implies x=(2-sqrt(3))/((2+sqrt(3))(2-sqrt(3)))` `implies x=(2-sqrt(3))/(4-3)` `implies x=2-sqrt(3)` And `(1)/(x)=sqrt(3)+2` Now `(x+(1)/(x))^(2)=(2-sqrt(3)+sqrt(3)+2)^(2)` `=(4)^(2)=16` |
|
| 27. |
`(root(3)(3))^(4)` =________ . |
| Answer» Correct Answer - `3xxroot(3)(3)` | |
| 28. |
The perimeter of a triangular field is 540 m and its sides are in the ratio `25: 17:12`. Find the area of the triangle. Also, find the cost ploughing the field at `Rs. 18.80` per `10 m^2` |
|
Answer» perimeter =540m 25x+17x+12x=540m 54x=540m x=10m sides of triangle are 25x=250m 17x=170m 12x=120m S=250+170+120/2=270 area of triangle=`sqrt(s(s-a)(s-b)(s-c))` `=sqrt(270(270-250)(270-170)(270-120))` =9000`m^2` cost 10`m^2`=18.80Rs 1`m^2`=1.880Rs 9000`m^2`=9000*1.880=16920Rs. |
|
| 29. |
If `root(x)(3)xxroot(y)(5)=10125`, then `12xy` =________.A. 1B. `1/3`C. 2D. `1/2` |
|
Answer» Correct Answer - A `root(x)(3)xxroot(y)(5)=10125` `3^(1//x).51^(1//y)=3^(4)xx5^(3)` `implies (1)/(x)=4, (1)/(y)=3` `implies 4x=1, 3y=1` `implies 12xy=1` |
|
| 30. |
`sqrt(sqrt(63)+sqrt(56))=`A. `root(4)(7)(sqrt(3)+sqrt(5))`B. `root(4)(7)(sqrt(3)+1)`C. `root(4)(7)(sqrt(3)+sqrt(5))`D. `root(4)(7)(sqrt(2)+1)` |
|
Answer» Correct Answer - D (i) Bring a possible term out of the root. (ii) `sqrt(sqrt(63)+sqrt(56))=root(4)(7)sqrt(sqrt(7)+sqrt(8))` (iii) Let `sqrt(3+2sqrt(2))=sqrt(x)+sqrt(y)` |
|
| 31. |
If `a=sqrt(17)-sqrt(16) and b=sqrt(16)-sqrt(15)` thenA. `a lt b`B. `a gt b`C. `a=b`D. None of these |
|
Answer» Correct Answer - A (i) If `a gt b ` , then `(1)/(a) lt (1)/(b)` (ii) Rationalize the numerators of given surds and then compare. |
|
| 32. |
If `x=(1)/(5+2sqrt(6))` , then `x^(2)-10x+1=`_______.A. 1B. `-1`C. 1D. 10 |
|
Answer» Correct Answer - C `x=(1)/(5+2sqrt(6))` `x=(5-2sqrt(6))/(25-24) =x =5-2sqrt(6)` `(1)/(x)=5+2sqrt(6) implies x+(1)/(x)=10` `x^(2)+1=10x implies x^(2) -10x+1=0` |
|
| 33. |
`(root(6)(15-2sqrt(56)))*(root(3)(sqrt(7)+2sqrt(2)))`=_______. |
|
Answer» Correct Answer - C `(root(6)(15-2sqrt(56)))(root(3)(sqrt(7)+2sqrt(2)))` `root(3)(sqrt(15-2sqrt(56)))root(3)(sqrt(7)+2sqrt(2))` `=root(3)(sqrt(8)-sqrt(7))root(3)(sqrt(7)+sqrt(8))=root(3)(8-7)=1` |
|
| 34. |
`sqrt(x^(2)sqrt(9^(2)sqrt((81)^(2)sqrt(16)^(16))))`=______.A. `6xx2^(4)`B. `3^(3)xx2`C. `6^(3)xx2^(3)`D. `6^(3)xx2` |
|
Answer» Correct Answer - D `sqrt(3^(2)sqrt(9^(2)sqrt((81)^(2)sqrt(16^(16)))))` `=(3^(2))^(1//2)xx(9^(2))^(1//4)xx[(81)^(2)]^(1//8)xx[(16)^(16)]^(1//16)` `=3xx3xx3xx16=6^(3)xx2` |
|
| 35. |
Express the following surds with rational denominators `(a) 2/sqrt14 (b) (2.3^(1/3))/25^(1/3)` |
|
Answer» (a) `(2)/(sqrt(14))xx(sqrt(14))/(sqrt(14))=(2sqrt(14))/(14)=(sqrt(14))/(7)` (b) `(2root(3)(3))/(root(3)(25))=(2root(3)(3))/(root(3)(25))xx(root(3)(5))/(root(3)(5))=(2root(3)(3xx5))/(root(3)(5^(3)))=(2root(3)(15))/(5)` |
|
| 36. |
If `(3^(5x)xx(81)^(2)xx6561)/(3^(2x))=3^(7)` , then x =_______A. 3B. `-3`C. `(1)/(3)`D. `(-1)/(3)` |
|
Answer» Correct Answer - B Apply laws of indices. |
|
| 37. |
Two mixed quadratic surds, `a + sqrt(b) and a-sqrt(b)`, whose sum and product are rational , are called _____ surds. |
| Answer» Correct Answer - conjugate | |
| 38. |
Arrange the following in ascending or descending order of magnitude: `root(6)(6)root(3)(7),sqrt(5)` |
|
Answer» `root(4)(6)=6^(1//4),root(3)(7)=7^(1//3),sqrt(5)=r^(1//2)` LCM of the denominators of the exponents of these three terms, 4,3 and 2 is 12. Now express the exponent of each term, as a fraction in which the denominator is 12. `6^((1)/(4))=6^((3)/(12))=(6^(3))^((1)/(12))=root(12)(216)` `7^((1)/(3))=7^((4)/(12))=(7^(4))^((1)/(12))=root(12)(2401)` `5^((1)/(2))=5^((6)/(12))=(5^(6))^((1)/(12))=root(12)(15625)` Now `root(4)(6)=root(12)(216),root(3)(7)=root(12)(2401),sqrt(5)=root(12)(15625)` Hence , their ascending order is `root(12)(216),root(12)(2401), root(12)(15623),` i.e., `root(4)(6), root(3)(7), sqrt(5)` `therefore` The descending order of magnitude of the given radicals is `sqrt(5),root(3)(7), root(4)(6)`. |
|
| 39. |
If the product of two surds is a rational number,then each of the two is a _____ of the other |
| Answer» Correct Answer - rationalizing factor | |
| 40. |
Find the remainder when `f (x) = 12x^3 -13x^2 -5x +7` is divided by `(3x+2)`. |
|
Answer» `f(x) = 12x^3 -13x^2 - 5x + 7` `3x+ 2 = 0` `x = -2/3` now as `f(x) = p(g(x)) + R` `f(-2/3) = p(g(-2/3)) + R` `f(-2/3) = R` `R= 12(-2/3)^3 - 13(-2/3)^2 - 5(-2/3) + 7` `= 12*(-8/27) - 13*4/9 + 10/3 + 7` `= -32/9-52/9 + 10/3 + 7` `= (-32-52+30+63)/9` `= (-84+93)/9` `= 9/9 = 1` remainder answer |
|
| 41. |
If `x=2^(1//3)-2`, then `x^(3)+6x^(2)+12x`=_______A. 6B. `-6`C. 8D. `-8` |
|
Answer» Correct Answer - B Given `x=2^(1//3)-2` `implies x+2=2^(1//3)` Taking the cubes of the terms on both the sides , `implies (x+2)^(3)=(2^(1//3))^(3)` `implies x^(3)+6x^(2)+12x=-6` |
|
| 42. |
Arrange the following surds in an ascending order of magnitude : `root(3)(4),root(4)(5),sqrt(8)` |
| Answer» Correct Answer - `root(4)(5),root(3)(4),sqrt(8)` | |
| 43. |
(a) `sqrt15xxsqrt35.` (b) `2sqrt3 div3sqrt27.` (c ) Muliple `root(3)(3)" by " root(4)(2).`(d) Divide `""root(6)(5)" by "root(3)(10).` |
|
Answer» `(a) (sqrt15)(sqrt35)=sqrt((15)(35))=sqrt((5)(3)(5)(7))=5sqrt(21).` (b) `2sqrt3div3sqrt27=(2sqrt3)/(3sqrt27` `=(2sqrt3)/((3)sqrt(3^(2)(3)))=(2sqrt3)/((3)(3)sqrt3)9/3.` (c ) `""^(3)sqrt3=3^(1//3)and""^(4)sqrt2=2^(1//4)` The LCM of 3 and 4 is 12 `therefore3^(1//3)=3^(4//12)=""^(12)sqrt(3^(4))` `2^(1//4)=2^(3//12)=""^(12)sqrt(2^(3))` `(""^(3)sqrt3)(""^(4)sqrt2)=(""^(12)sqrt(3^(4)))(""^(12)sqrt(2^(3)))` `=""^(12)sqrt((3^(4))(""^(12)sqrt(2^(3))))` `=""^(12)sqrt((81)(8))=""^(12)sqrt(648).` (d) `""^(6)sqrt5=5^(1//6)` LCM of 3 and 6 is 6 `""^(3)sqrt10=10^(1//3)=10^(2//6)=""^(6)sqrt(10^(2))=""^(6)sqrt100` `therefore(""^(6)sqrt5)/(""^(3)sqrt10)=(""^(6)sqrt10)/(""^(6)sqrt100)` `=""^(6)sqrt((5)/(100))=""^(6)sqrt((1)/(20)).` |
|
| 44. |
Arrange the following surds in an ascending order of magnitude: `root(3)(9),root(9)(5),root(3)(7)` |
| Answer» Correct Answer - `root(9)(5),root(6)(9),root(3)(7)` | |
| 45. |
Express the following in the simplest form : `root(4)(root(5)(1048576))` |
| Answer» Correct Answer - 2 | |
| 46. |
If `x=1+5^(1/3)+5^(2/3)` then find the value of `x^3-3x^2-12x+6.`A. 22B. 20C. 16D. 14 |
| Answer» Correct Answer - A | |
| 47. |
Divide :` root(6)(144)` by `root(6)(4)`. |
| Answer» Correct Answer - `root(6)(36)` | |
| 48. |
`(3)/(7)` lies between the fractions _______.A. `(4)/(9),(5)/(9)`B. `(43)/(99),(4)/(9)`C. `(42)/(99),(4)/(9)`D. `(41)/(99),(42)/(99)` |
|
Answer» Correct Answer - C `(3)/(7)=0.bar(428571)` (a) `(4)/(9)=0.444…. (5)/(9)=0.555…` (b) `(43)/(99)=0.434343… (4)/(9)=0.4444 ….` (c) `(4)/(9)=0.4444… (42)/(99)=0.424242…` (d) `(41)/(99)=0.0414141… (42)/(99)=0.424242 …` |
|
| 49. |
If `x=(1)/(2-sqrt(3))`, the value of `x^(3)-2x^(2)-7x+10` is equal toA. `2+sqrt(3)`B. 10C. `7+2sqrt(3)`D. 8 |
| Answer» Correct Answer - D | |
| 50. |
Classify the following numbers as rational or irrational:(i) `2-sqrt(5)` (ii) `(3+sqrt(23))-sqrt(23)` (iii) `(2sqrt(7))/(7sqrt(7))` (iv) `1/(sqrt(2))` (v) `2pi` |
|
Answer» (i) `2-sqrt(5) = 2-2.23606797... = -0.23606797...`Since, decimal representation of this number is non-terminating, it is an irrational number. (ii)`(3+sqrt(23))-sqrt23 = 3 = 3/1`Since, the above number can be represented as `p/q`, where both `p` and `q` are integers, this number is rational number. (iii)`(2sqrt7)/(7sqrt7) = 2/7`Since, the above number can be represented as `p/q`, where both `p` and `q` are integers, this number is rational number. (iv)`1/sqrt2 = 0.70710678...` Since, decimal representation of this number is non-terminating, it is an irrational number. (v)`2pi = 2(3.14159265...) = 6.28318530...` Since, decimal representation of this number is non-terminating, it is an irrational number. |
|