Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

`{16-(4 + 18 divide 6 - bar(7-5)) xx 5]`

Answer» Correct Answer - -9
`{16-(4+17 divide 6 -bar(7-5)) xx 5}`
`={16-(4 + 3 -2) xx 5} = {16-(7-2) xx 5}`
`={16- 25} = -9`
152.

Estimate the following to the nearest hundreds(a) 439 + 334 + 4317 (b) 1,08,734 – 47,599 (c) 8325 – 491 (d) 4,89,348 – 48,365

Answer»

(a) 439 + 334 + 4317 

439 ⇒ 400 

334 ⇒ 300 

4317 ⇒ 4300 

Sum = 5,000 

(b) 1,08,734 – 47,599 

1,08,734 ⇒ 1,08,700 

47,599 ⇒ 47,600 

Difference = 61,100 

(c) 8325 – 491 

8325 ⇒ 8300

491 ⇒ 500 

Differences = 7,800 

(d) 4,89,348 – 48,365 

4,89,348 ⇒ 4,89,300 

48,365 ⇒ 48,400 

Difference = 4,40,900

153.

`4940 divide [{12 + 16 (48-(8-bar(15+6)))}]`

Answer» Correct Answer - 5
`4940 divide [12 + 16 {(48-(8-bar(15-6))}]`
`=4940 divide [ 12 + 16 {48-(8-21)}]`
`=4940 divide [12 + 16{48 + 13}]`
` = 4940 divide [12+16{61}]`
`=4940 divide [12 + 976] = 4940 divide 988 = 5`
154.

`52-[48 divide 12 xx 6 {6-(8 xx 3 - bar(6-4))}]`

Answer» Correct Answer - 436
`52-[48 divide 12 xx 6 {6-(8 xx 3-bar(6-4))}]`
` = 52-[ 4 xx 6 {6-(24-6 + 4)}]`
`=52-[24.{6-22}] = 52-[24 xx (-16)]`
`= 52 + 384 = 436`
155.

In the same way, make different 4 digit numbers by exchanging the digits and check every time whether the number made is small or big.1432 < 4321 4321 > 32143214 > 2143

Answer»
THHTO
1432
4321
3214
2143

156.

India’s population has been steadily increasing from 439 million in 1961 to 1028 million in 2001. Find the total increase in population from 1961 to 2001. Write the increase in population in the Indian system of Numeration using commas suitably.

Answer»

Population of India in 1961 = 439 millions 

= 439,000,000 

Population of India in 2001 = 1028 millions 

= 1,028,000,000 

Increase in population from 1961 to 2001 = Population in 2001 – Population in 1961 

= 1028000000 – 439000000 

= 589000000

= 589 million. 

Increase in population in Indian System 

= 58,90,00,000

157.

The population of a city was 43,43,645 in the year 2001 and 46,81,087 in the year 2011. Estimate the increase in population by rounding off to the nearest thousand.

Answer»

Population in 2001 = 43,43,645 

Population in 2011 = 46,81,087 

Increase in population = 46,81,087 – 43,43,645 

= 3,37,442 

When rounded off to the nearest thousand = 3,37,000

158.

Arrange in descending order. 8461, 7535, 2943, 6214

Answer»

8461 > 7535 > 6214 > 2943

159.

Arrange the following numbers in the descending order: 128435, 10835, 21354, 6348, 25840

Answer»

Place value chart is given by

Qn. No.Given NumberLT THTHHTO
(i)128435128435
(ii)1083510835
(iii)2135421354
(iv)634825840
(v)2584025840

The number with more digits is the greater number

Step 1: 128435 is the larger number and 6348 is the least number 

Step 2: For the remaining 5 digit numbers we can compare the left-most digits and find 25840 > 21354 > 10835. 

The descending order: 

128435 > 25840 > 21354 > 10835 > 6348

160.

Represent the following as integers. (a) Gain of Rs. 28 (b) Loss of Rs. 48 (c) 36 m below sea level (d) `12^(@)`C rise in temperature (e) `5^(@)`C fall in temperature

Answer» Correct Answer - (a) Rs. +28 (b) Rs.-48
`(c) -36m " " (d) 12^(@)C " " (e)-5^(@)C`
`(a) "Gain of Rs." 28 to "Rs." + 28`
`(b) "Loss of Rs." 48 to "Rs." - 48`
`(c) 36 " m below sea level "to -36 m`
(d) `12^(@)C " rise in temperature " to +12^(@)C`
(e) `5^(@)C " fall in temperature " to -5^(@)C`
161.

Write the following in descending order. (i) -8, 6, -9, 13, -23, 14, -16, 25 (ii) 42, -43, 64, -86, 120, -115

Answer» Correct Answer - (i) 25, 14, 13, 6, -8, -9, -16, -23.
(ii) 120, 64, 42, -43, -86, -115.
(i) Descending order : 25, 14, 13, 6, -8, -9, -16, -23
(ii) Descending order: 120, 64, 42, -43, -86, -155
162.

Check whether the equation are identities. Write the patterns got from each, on taking x = 1, 2, 3, 4, 5 and x = -1, -2, -3, -4, -5.i. -x + (x + 1) = 1ii. -x + (x + 1) + (x + 2) – (x + 3) = 0iii. -x – (x + 1) + (x + 2) + (x + 3) = 4

Answer»

i. -x + (x + 1) = 1

If x = 1, -x + (x + 1)

= -1 + (1 + 1) = -1 + 2 = 1

If x = 2, -x + (x + 1)

= -2 + (2 + 1) = -2 + 3 = 1

If x = 3, -x + (x + 1)

= -3 + (3 + 1) = -3 + 4 = 1

If x = 4 -x + (x + 1)

= 4 + (4 + 1) = -4 + 5 = 1

If x = 5, -x + (x + 1)

= -5 + (5 + 1) = -5 + 6 = 1

If x = -1, -x + (x + 1)

= -(-1) + (-1 + 1) = 1 + 0 = 1

If x = -2, -x + (x + 1)

= -(-2) + (-2 + 1) = 2 + (-1) = 1

If x = -3, -x + (x + 1)

= -(-3) + (-3 + 1) = 3 + (-2) = 1

If x = -4, -x + (x + 1)

= -(-4) + (-4 + 1) = 4 + (-3) = 1

If x = -5, -x + (x + 1)

= -(-5) + (-5 + 1) = 5 + (-4) = 1

It is an identity.

ii. -x + (x + 1) + (x + 2) – (x + 3) = 0

If x = 1, -x + (x + 1) + (x + 2) – (x + 3)

= -1 + (1 + 1) + (1 + 2) – (1 + 3)

= -1 + 2 + 3 – 4 = 0

If x = 2, -x + (x + 1) + (x + 2) – (x + 3)

= -2 + (2 + 1) + (2 + 2) – (2 + 3)

= -2 + 3 + 4 – 5 = 0

If x = 3, -x + (x + 1) + (x + 2) – (x + 3)

= -3 + (3 + 1) + (3 + 2) – (3 + 3)

= -3 + 4 + 5 – 6 = 0

If x = 4 -x + (x + 1) + (x + 2) – (x + 3)

= -4 + (4 + 1) + (4 + 2) – (4 + 3)

= -4 + 5 + 6 – 7 = 0

If x = 5, -x + (x + 1) + (x + 2) – (x + 3)

= -5 + (5 + 1) + (5 + 2) – (5 + 3)

= -5 + 6 + 7 - 8 = 0

If x = -1, -x + (x + 1) + (x + 2) – (x + 3)

= -(-1) + (-1 + 1) + (-1 + 2) – (-1 + 3)

= 1 + 0 + 1 – 2 = 0

If x = -2, -x + (x + 1) + (x + 2) – (x + 3)

= 2 + (-2 + 1) + (-2 + 2) – (-2 + 3)

= 2 + -1 + 0 – 1 = 0

If x = -3, -x + (x + 1) + (x + 2) – (x + 3)

= 3 + (-3 + 1) + (-3 + 2) – (-3 + 3)

= 3 + -2 + -1 – 0 = 0

If x = -4, -x + (x + 1) + (x + 2) – (x + 3)

= 4 + (-4 + 1) + (-4 + 2) – (-4 + 3)

= 4 + -3 + -2 – (-1) = 0

If x = -5, -x + (x + 1) + (x + 2) – (x + 3)

= 5 + (-5 + 1) + (-5 + 2) – (-5 + 3)

= 5 + -4 + -3 – (-2) = 0

It is an identity.

iii. -x – (x + 1) + (x + 2) + (x + 3) = 4

If x = 1, -x – (x +1) + (x + 2) + (x + 3)

= -1 – (1 + 1) + (1 + 2) + (1 + 3)

= -1 – 2 + 3 + 4 = 4

If x = 2, -x – (x + 1) + (x + 2) + (x + 3)

= -2 – (2 + 1) +(2 + 2) + (2 + 3)

= -2 – 3 + 4 + 5 = 4

If x = 3, -x – (x + 1) + (x + 2) + (x + 3)

= -3 – (3 + 1) + (3 + 2) + (2 + 3)

= -3 – 4 + 5 + 6 = 4

If x = 4 -x – (x + 1) + (x + 2) + (x + 3)

= -4 – (4 + 1) + (4 + 2) + (4 + 3)

= -4 – 5 + 6 + 7 = 4

If x = 5, -x – (x + 1) + (x + 2) + (x + 3)

= -5 – (5 + 1) + (5 + 2) + (5 + 3)

= -5 – 6 + 7 + 8 = 4

If x = -1, -x – (x + 1) + (x + 2) + (x + 3)

= -(-1) – (-1 + 1) + (-1 + 2) + (-1 + 3)

= 1 – 0 + 1 + 2 = 4

If x = -2, -x – (x + 1) + (x + 2) + (x + 3)

= 2 – (-2 + 1) + (-2 + 2) + (-2 + 3)

= 2 – (-1) + 0 + 1 = 4

If x = -3, -x – (x + 1) + (x + 2) + (x + 3)

= 3 – (-3 + 1) + (-3 + 2) + (-3 + 3)

= 3 – (-2) + – 1 + 0 = 4

If x = -4, -x – (x + 1) + (x + 2) + (x + 3)

= 4 – (-4 + 1) + (-4 + 2) + (-4 + 3)

= 4 – (-3) + – 2 + (-1) = 4

If x = -5, -x – (x + 1) + (x + 2) + (x + 3)

= 5 – (-5 + 1) + (-5 + 2) + (-5 + 3)

= 5 – (-4) + -3 + (-2) = 4

It is an identity.

163.

Take as x different positive numbers, negative numbers and zero, and compute x + 1, x – 1, 1 – x. Check whether the equations below hold for all numbers.i. (1 + x) + (1 – x) = 2ii. x – (x – 1) = 1iii. 1 – x = -(x – 1)

Answer»

If x = 1

x + 1 = 1 + 1 = 2

x – 1 = 1 – 1 = 0

1 – x = 1 – 1 = 0

If x = 2

x + 1 = 2 + 1 = 3

x – 1 = 2 – 1 = 1

1 – x = 1 – 2 – 1

If x = 0

x + 1 = 0 + 1

x – 1 = 0 – 1 = -1

1 – x = 1 – 0 = 1

If x = -1

x + 1 = -1 + 1 = 1 – 1 = 0

x – 1 = -1 – 1 = -2

1 – x = 1 – (-1) = 1 + 1 = 2

If x = -2

x + 1 = -2 + 1 = -1

x – 1 = -2 – 1 = -3

1 – x = 1 – (-2) = 1 + 2 = 3

i. (1 + x) + (1 – x)

In x = 1, (1 + x) + (1 – x) = 2 + 0 = 2

In x = 2, (1 + x) + (1 – x) = 3 + (-1) = 3 – 1 = 2

In x = 0, (1 + x) + (1 – x) = 1 + 1 = 2

In x = -1, (1 + x) + (1 – x) = 0 + 2 = 2

In x – 2, (1 + x) + (1 – x) – 1 + 3 = 3 – 1 = 2

(1 + x) + (1 – x) = 2 , for all values of x

ii. x – (x – 1)

In x = 1, x – (x – 1) = 1 – 0 = 1

In x = 2, x – (x – 1) = 2 – 1 = 1

In x = 0, x – (x – 1) = 0 – (-1) = 1

In x = -1, x – (x – 1) = -1 – (-2) = -1 + 2 = 1

In x = -2, x – (x – 1) = -2 – (-3) = -2 + 3 = 1

x – (x – 1) = 1, for all values of x

iii. 1 – x

In x = 1, 1 – x = o = -(x – 1)

In x = 2, 1 – x = -1 = -(1) = -(x – 1)

In x = o, 1 – x = 1 = -(-1) = -(x – 1)

In x = -1, 1 – x = 2 = -(-2) = -(x – 1)

In x = -2, 1 – x = 3 = -(-3) = -(x – 1)

1 – x = -(x – 1), for all values of x

164.

Simplify \(\frac{-3}{2}+(\frac{-1}{2}\times\frac{-3}{4})+\frac{1}{2}\)

Answer»

\(\frac{-3}{2}+(\frac{-1}{2}\times\frac{-3}{4})+\frac{1}{2}\)

\(\frac{3}{2}+\frac{3}{8}+\frac{1}{2}\)

\(\frac{(-3\times4)+(3\times1)+(4\times1)}{8}\)

\(\frac{-12+3+4}{8}\) = \(\frac{-5}{8}\)

165.

As per the census of 2001, the population of four states are given below. Arrange the states in ascending and descending order of their population.StatePopulationTamil Nadu72147030Rajasthan68548437Madhya Pradesh72626809West Bengal91276115

Answer»

All the four values have 8 digits 

Comparing the leftmost digits we have 

91276115, 72626809, 72147030, 68548437 

Descending order: 91276115 > 72626809 > 72147030 > 68548437 

Ascending order: 68548437 < 72147030 < 72626809 < 91276115 

Ascending order: Rajasthan < Tamil Nadu < Madhy Pradesh < West 

Bengal 

Descending order: West Bengal > Madhya Pradesh > TamilNadu > Rajasthan

166.

Write the numbers in ascending order: 688, 9, 23005, 50, 7500.

Answer»

Ascending order: 9, 50, 688,7500, 23005 

9 < 50 < 688 < 7500 < 23005

167.

Arrange the following integers in ascending order. (i) 3, -5, 0, -2, -7, -1, 4 (ii) -15, -12, 11, -13, 10, 5, -9

Answer» Correct Answer - (i) -7, -5, -2, -1, 0, 3, 4.
(ii) -15, -13, -12, -9, 5, 10, 11.
(i) Ascending order : -7, -5, -2, -1, 0, 3, 4
(ii) Ascending order : -15, -13, -12, -9, 5, 10, 11
168.

Find the units' digit in the expression 111.122.133.144.155.166 ?

Answer»

Units' digit in the given expression 

= Units’ digit of 11 × Units’ digit of 22 × Units’ digit of 33 × Units’ digit of 44 × Units’ digit of 55 × Units’ digit of 66 

= Units’ digit of (1 × 4 × 7 × 6 × 5 × 6) 

= Units' digit of 5040 = 0.

169.

Write whether the answer got on doing the following operations are positive number or negative number.a. -8 x 9b. (-7) x (-8)c. (-7) ÷ 1d. (-9) ÷ (-3)e. 5 x 10f. 100 ÷ (-10)g. 10 x (-10)

Answer»

a. Negative number (-8 x 9 = -72)

b. Positive number (-7 x -8 = 56)

c. Negative number (-7 ÷ 1 = -7)

d. Positive number (\(\frac{-9}{-3}=3\))

e. Positive number (5 x 10 = 50)

f. Negative  number (\(\frac{100}{-10}=-10\))

g. Negative  number (10 x -10 = -100)

170.

Arrange the following in ascending order : -3,-8, 10, -2, 7, 15, -12, 6.

Answer» `-12, -8, -3, -2, 6, 7, 10, 15.`
171.

What percent is the least rational number of the greatest rational number, if \(\frac{1}{2}\), \(\frac{2}{5}\), \(\frac{1}{3}\) and \(\frac{5}{9}\) are arranged in ascending order ?

Answer»

Since LCM of 2, 5, 3, 9 = 270,\(\frac{1}{2}=\frac{135}{270}\)\(\frac{2}{5}=\frac{108}{270}\),\(\frac{1}{3}=\frac{90}{270}\),\(\frac{5}{9}=\frac{150}{270}\)

\(\therefore\) Arranged in ascending order the numbers are \(\frac{90}{270}\),\(\frac{108}{270}\),\(\frac{135}{270}\),\(\frac{150}{270}\),i.e.,\(\frac{1}{2}\),\(\frac{2}{5}\),\(\frac{1}{2}\) and \(\frac{5}{9}\).

\(\therefore\) Required percent =(\(\frac{1}{3}\)÷ \(\frac{5}{9}\)) x 100% = \((\frac{1}{3}\times \frac{9}{5}\times100)\)% = 60%

172.

Write some properties of operations of rational numbers.

Answer»

Properties of operations of rational numbers, For any rational numbers a, b, c.-

(i) Rational numbers are closed under addition, multiplication and subtraction,i.e.,(a + b),(a x b) and (a - b) are also rational numbers.

(ii) Rational numbers follow the commutative law of addition and multiplication, i.e., a + b = b + a and a × b = b × a.

(iii) Rational numbers follow the associative law of addition and multiplication, i.e., (a + b) + c = a + (b + c) and (a × b) × c = a × (b × c).

(iv) Additive identity : 0 is the additive identity for rational numbers as a + 0 = 0 + a = 0.

(v) Multiplicative identity : 1 is the multiplicative identity for rational numbers as a × 1 = 1 × a = a.

(vi) Additive inverse : For every rational number 'a', there is a rational number '–a' such that a + (–a) = 0.

(vii) Multiplicative inverse : For every rational number 'a' except 0, there is a rational number \(\frac{1}{a}\) such that a x \(\frac{1}{a}\)=1.

(viii) Distributive property : Multiplication distributes over addition in rational numbers,i.e., a (b + c) = a × b + a × c.

(ix) Between any two different rational numbers, there are infinitely many rational numbers. Rational numbers between any two given rational numbers a and b are q1 \(\frac{1}{2}(a+b)\), q2\(\frac{1}{2}(q_1+b)\), q3\(\frac{1}{2}(q_2+b)\) and so on.

173.

What is Rational number?

Answer»

Numbers of the form \(\frac{p}{q}\), q ≠ 0 where p and q are integers and which can be expressed in the form of terminating or repeating decimals are called rational numbers.

e.g.,\(\frac{7}{32}\)= 0.21875, \(\frac{8}{15}\)= 0.5\(\bar 3\) are rational numbers.