Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

In ΔABC, a line parallel to BC cuts a B and AC at X and Y(a) If AB = 3.6cm, AC = 2.4cm, AX = 2.1 cm, what is the length of AY?(b) If AB = 2cm, AC = 1.5cm, AY = 0.9cm what is the length of BX?

Answer»

a. \(\frac{AB}{AX}=\frac{AC}{AY}\) \(\Rightarrow \frac{3.6}{2.1}=\frac{2.4}{AY};\)

⇒ 3.6 × AY = 2.4 × 2.1 

⇒ AY = 1.4 cm

b. Let length of AX = x cm

\(\frac{AX}{AB}=\frac{AY}{AC}\) \(\Rightarrow \frac{x}{2}=\frac{0.9}{1.5};\)

\(1.5\times x=1.8\)

⇒ x = 1.2;

BX = AB – AX; BX = 2 – 1.2 = 0.8 cm

2.

Prove that, if a line is perpendicular to one of the two parallel lines, then it is perpendicular to the other line also.Given: line AB || line CD and line EF intersects them at P and Q respectively.line EF ⊥ line ABTo prove: line EF ⊥ line CD

Answer»

Proof: 

line EF ⊥ line AB[Given] 

∴ ∠APR = 90° ….(i) 

line AB || line CD and line EF is their transversal. 

∴ ∠EPB ≅ ∠PQD …..(ii) [Corresponding angles] 

∴ ∠PQD = 90° [From (i) and (ii)] 

∴ line EF ⊥ line CD

3.

In the given figure, how will you decide whether line ¡ and line m are parallel or not?

Answer»

In the figure, we observe that line I and line m are coplanar and do not intersect each other. 

∴ Line l and line m are parallel lines.

4.

In the given figure, line RP || line MS and line DK is their transversal. ∠DHP = 85°. Find the measures of following angles.i. ∠RHD ii. ∠PHG iii. ∠HGS iv. ∠MGK

Answer»

i. ∠DHP = 85° …..(i) 

∠DHP + ∠RHD = 180° [Angles in a linear pair] 

85° + ∠RHD = 180° 

∴ ∠RHD = 180°- 85° 

∴ ∠RHD = 95° …..(ii) 

ii. ∠PHG = ∠RHD [Vertically opposite angles] 

∴ ∠PHG = 95° [From (ii)]

iii. line RP || line MS and line DK is their transversal. [Corresponding angles] 

∴ ∠HGS = ∠DHP …..(iii) [From (i)] 

iv. ∠HGS = 85° [Vertically opposite angles] 

∴ ∠MGK = ∠HGS ∠MGK = 85° [From (iii)]

5.

The number of angles formed by a transversal of two lines is _____. (A) 2 (B) 4 (C) 8 (D) 16

Answer»

(C) The answer is 8

6.

Select the correct alternative and fill in the blanks in the following statement.If a transversal intersects two parallel lines then the sum of interior angles on the same side of the transversal is ____. (A) 0° (B) 90° (C) 180° (D) 360°

Answer»

(C) The answer is 180°

7.

In the given figure, y = 108° and x = 71°. Are the lines m and n parallel? Justify?

Answer»

y = 108°, x = 71° …[Given] 

x + y = 71° + 108° 

= 179° 

∴ x + y = 180° 

∴ The angles x andy are not supplementary. 

∴ The angles do not satisfy the interior angles test for parallel lines 

∴ line m and line n are not parallel lines.

8.

In the given figure, if line AB || line CF and line BC || line ED then prove that ∠ABC = ∠FDE.

Answer»

Given: line AB || line CF and line BC || line ED 

To prove: ∠ABC = ∠FDE

Proof: 

line AB || line PF and line BC is their transversal. 

∴ ∠ABC = ∠BCD ….(i) [Alternate angles] line BC || line ED and line CD is their transversal. 

∴ ∠BCD = ∠FDE ….(ii) [Corresponding angles] 

∴ ∠ABC = ∠FDE [From (i) and (ii)].

9.

In the given figure, Line AB || line CD || line EF and line QP is their transversal. If y : z = 3 : 7 then find the measure of ∠x.

Answer»

y : z = 3 : 7 [Given] 

Let the common multiple be m 

∴ ∠j = 3m and ∠z = 7m ….(i) 

line AB || line EF and line PQ is their transversal 

[Given]

∠x = ∠z

∴ ∠x = 7m …..(ii) [From (i)] 

line AB || line CD and line PQ is their transversal 

[Given]

∠x + ∠y = 180° 

∴ 7m + 3m = 180° 

∴ 10m = 180°

∴ m = 18

∴ ∠x = 7m = 7(18°) [From (ii)] 

∴ ∠x = 126°

10.

If a transversal intersects two parallel lines then the sum of interior angles on the same side of the transversal is ____. (A) 0° (B) 90° (C) 180° (D) 360°

Answer»

Correct option is (C) 180°

11.

In the given figure, line AB || line CD and line PQ is transversal.Measure of one of the angles is given.Hence find the measures of the following angles.i. ∠ART ii. ∠CTQ iii. ∠DTQiv. ∠PRB

Answer»

i. ∠BRT = 105° ….(i) 

∠ART + ∠BRT = 180° [Angles in a linear pair] 

∴ ∠ART + 105° = 180°

 ∴ ∠ART = 180° – 105° 

∴ ∠ART = 75° …(ii)

ii. line AB || line CD and line PQ is their transversal. 

∴ ∠CTQ = ∠ART [Corresponding angles] 

∴ ∠CTQ = 75° [From (ii)]

iii. line AB || line CD and line PQ is their transversal. 

∴ ∠DTQ = ∠BRT [Corresponding angles] 

∴ ∠DTQ = 105° [From (i)]

iv. ∠PRB = ∠ART [Vertically opposite angles] 

∴ ∠PRB = 75° [From (ii)]

12.

A transversal intersects two parallel lines. If the measure of one of the angles is 40°, then the measure of its corresponding angle is ______. (A) 40°(B) 140°(C) 50° (D) 180°

Answer»

Correct option is (A) 40°

13.

Two parallel lines are intersected by a transversal. If measure of one of the alternate interior angles is 75° then the measure of the other angle is _____. (A) 105° (B) 15°(C) 75° (D) 45°

Answer»

Correct option is (C) 75°

14.

In ∆ABC, ∠A = 76°, ∠B = 48°, then ∠C = _____. (A) 66° (B) 56° (C) 124°(D) 28°

Answer»

(B) 56°

In ∆ABC, ∠A + ∠B + ∠C = 180° 

∴ ∠C = 180° – 76° – 48° = 56°

15.

In ∆ABC, ∠A = 76°, ∠B = 48°, then ∠C = _____.(A) 66° (B) 56°(C) 124°(D) 28°

Answer»

Correct option is (B) 56°

In ∆ABC, ∠A + ∠B + ∠C = 180°

∴ ∠C = 180° – 76° – 48° = 56°