InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Consider the circle `x^2 + y^2 = 9` and the parabola `y^2 = 8x`. They intersect at P and Q in first and 4th quadrant,respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.A. 4B. 3C. `8/3`D. 2 |
|
Answer» Correct Answer - D `"Radius of incircle is, r"=Delta/s` `"Since, "Delta=16sqrt2` `"Now, s"=(6sqrt2+6sqrt2+4sqrt2)/2` `=8sqrt2` `:." "r=(16sqrt2)/(8sqrt2)` `=2` |
|
| 2. |
In triangle `A B C ,a : b : c=4:5: 6.`The ratio of the radius of the circumcircle to that of the incircleis____. |
|
Answer» Correct Answer - `(16)/(7)` We, have, `R=(abc)/(4Delta)" and "r=Delta/s` `=(abc)/(4(s-a)(s-b)(s-c))` But `a : b : c=4 : 5 : 6" "["given"]` `rArr" "a/4=b/5=c/6=k" [let]"` `rArr" "a=4k, b=5k, c=6k` `"Now, "s=1/2(a+b+c)=1/2(4k+5k+6x)=(15k)/2` `:." "R/r=((4k)(5k)(6k))/(4((15k)/2-4k)((15k)/2-5k)((15k)/2-6k))` `=(30k^(3))/(k^(3)((15-8)/2)((15-10)/2)((15-12)/2))=(30.8)/(7*5*3)=16/7` |
|
| 3. |
In `Delta ABC`, which one is true among the following ?A. `(b+c)"cos"(A)/(2)=sin((B+C)/(2))`B. `(b+c)"cos"((B+C)/(2))=alpha"sin"(A)/(2)`C. `(b-c)"cos"((B-C)/(2))=alpha"cos"((A)/(2))`D. `(b-c)"cos"(A)/(2)=sin((B-C)/(2))` |
|
Answer» Correct Answer - D Let a,b,c are the sides of `DeltaABC`, Now, `(b+c)/(c)=(k (sin B+sin C))/(k sin A)` [ by sine rule] `=(2sin ((B+C)/(2))cos((B-C)/(2)))/(2"sin"(A)/(2)"cos"(A)/(2))rArr(b+c)/(a)=(cos ((B-C)/(2)))/("sin"(A)/(2))` Also, `(b-c)/(a)=(sin ((B-C)/(2)))/("cos"(A)/(2))` |
|
| 4. |
If the angle `A ,Ba n dC`of a triangle are in an arithmetic propression and if `a , ba n dc`denote the lengths of the sides opposite to `A ,Ba n dC`respectively, then the value of the expression `a/csin2C+c/asin2A`is`1/2`(b) `(sqrt(3))/2`(c) `1`(d) `sqrt(3)`A. `(1)/(2)`B. `(sqrt(3))/(2)`C. 1D. `sqrt(3)` |
|
Answer» Correct Answer - D Since A,B,C are in AP `rArr 2B=A+C i.e., angle B =60^(@)` `:. (a)/(c)(2 sin C cos C)+(c)/(a)(2 sin A cos A)` `=2k(a cos C+c cos A)` [ Using `(a)/(ainA)=(b)/(sinB)=(c)/(sinC)=(c)/(sin C)=(1)/(k)]` `=2k(b)` `=2 sin B " " [ "using" b=a cos C+c cos A]` `=sqrt(3)` |
|