Saved Bookmarks
This section includes 7 InterviewSolutions, each offering curated multiple-choice questions to sharpen your Current Affairs knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
We know that the sum of the interior angles of a triangle is`180^0`. Show that the sums of eth interior angles of polygons with `3,4,5,6,`sides for an arithmetic progression. Find the sum of the interior angles ofor a 21 sided polygon. |
|
Answer» We know that sum of interior angles of a polygon of side `n=(2n-4)xx90^(@)=(n-2)xx180^(2)` Sum of interior angles a polygon with sides 3 is 180. Sum of interior angles of polygon with side `4=(4-2)xx180^(@)=360^(2)` Similarly , sum of interior angles of polygon with side 5,6,7,. are `540^(@) ,720 ^(@),900^(@)`....... the series will be `180^(@),360^(@),540^(@),720^(@),900^(@),......` Here `a=180^(@)` ` and d=360^(2)-180^(@)=180^(@)` since common difference is same between two consecutive terms of the series . so ir from an AP . we have to find the of interior angles of a 21 sides polygen . it means , we have to find the 19 th term of the above series . `a_(19)=a+(19-1)d` `=180+18xx180=3420` |
|
| 2. |
Any term of an AP (except first ) is equal to half the sum of terms which are equidistant from it . |
|
Answer» True Consider AnAP a,a,+d,A+2d ,… Now `a_(2)+a_(4)=a+d+a+3d` `=2a+4d=2a_(3)` `a_(3)=(a_(2)+a_(4))/(2)` Again ,` (a_(3)+a_(5))/(2)=(a+2d+a+4d)/(2)=(2a+6d)/(2)` ` =a+3d=a_(4)` hence ,the statement is true . |
|
| 3. |
If the sum of p terms of an AP is q and the sum of q terms is p, then show that the sum of `p+q` terms is `- (p+q)` , Also find the sum of first `p-q` terms (where , `pgtq`). |
|
Answer» let first term common difference of the AP be and d respectively . then `S_(p)=q` `implies (P)/(2)[2a+(p-1)d]=q` ` 2a+(p-1)d=(2q)/(p)` and `S_(q)-p` `implies (q)/(2)[2a+(q-1)d]=p` `implies 2a+(q-1)d=(2p)/(q)` On subtracting Eq (ii) from Eq (i) we get `2a+(p-1)d-2a-(q-1)d=(2q)/(p)-(2p)/(q)` ` implies [(p-1)-(q-1)]d=(2p^(2)-2p^(2))/(pq)` `implies [p-1-q_1]d=(2(q^(2)-p^(2)))/(pq)` `implies (p-q)d=(2(q^(2)-p^(2)))/(pq)` `therefore d=(-2(p+q))/(pq)` On substiuting the value of d in (eq (i) we get ` 2a+(p-1)((-2(p+q))/(pq))=(2q)/(p)` `implies 2a=(2q)/(p)+(2(P+q)(P-1))/(pq)` `implies a=[(2q)/(p) +(2(p+q)(p-1))/(pq)]` `Now S_(p+q) -(p+q)/(2)[2a+(p+q-1)d]` `=(p+q)/(2)[(2q)/(p)+(2(p+q)(p-1))/(pq)-((p+q-1)2(P+q))/(pq)]` ` =(p+q)[(q)/(p)+((p+q(p-1)-(p+q-1)(P+q))/(pq)]` `=(p+q)[(q)/(p)+((p+q)(p-1)-(p+q-1)(P+q))/(pq)]` `=(P+q)[(q)/(p)+((p+q)(p-1-p-q+1)(p+q))/pq)]` `=p+q [(q)/(p)-(p+q)/(p)]=(p+q)[(q-p-q)/(p)]` `S_(p+q)=-(p+q)` `S_(p-q)=(p-q)/(2)[2a+(p-q-1)d]` `=(p-q)/(2)[(2p)/(p)+(2(p+q)(p-1))/(pq)-(p-q-1)2(p+q))/(pq)]` `=(p-q)[(q)/(p) +(p+q(p-1-p+q+1))/(pq)]` `=(p-q)[(q)/(p)+((p+q)q)/(pq)]` `=(p-q)[(q)/(p)+(p+q)/(p)]=(p-q)((p+2q))/(p)` |
|
| 4. |
If the `p t h , q t h a n d r t h`terms of `a`G.P. are `a , b , c`respectively, prove that: `a^((q-r))dot^( )b^((r-p))dotc^((p-q))=1.` |
|
Answer» Let A , D are the first term and common difference difference of Ap and x, R are the first term and common ratio fo Gp respectively . According to the given condition , `A+(p-1)d=2`…(i) `A+(q-1) d=b`***(iii) ` A +(r-1) d=c`...(iii) and `a=xR^(p-1)` ...(iv) `b=xR^(p-1)` ...(v) `c=xR^(p-1)` ***(vi) On subtracting Eq,(ii) from Eq (i) we get `d(p-1-q+1)=a-b` `a-b=d(p-q)`***(vii) On subtracting Eq,(iii) from Eq (ii) we get `d(p-1-r+1)=b-c` `implies b-c=d(q-r)` ...(viii) On subtracting Eq,(i) from Eq (iii) we get `d(r-1-p+1)=c-a` `c-a=d (r-p)` ....(ix) taking LHS `=a^(b-c) b^(c-a) c^(a-b)` using Eqs (iv) ,(v) ,(vi) and (viii) , (ix) `LHS =(xR^(p-1))^(d(q-r) )(xR^(q-1) ) ^(d(r-p) ) (xR^(r-1))^(d(p-q))` `=x^(d(q-1)+d(r-p)+d(p-q))R^((p-1)d(q-r)+d(r-p)+(r-1)d(p-q))` `=x^(d(q-r+r=p-p-q))` `R^(d(pq-pr-q+r+qr- pq -r +p rp -rp-p+q))=x^(0)r^(0)=1` =RHS Hence proved . |
|
| 5. |
The sum of first n terms of an AP is given by `S_n=2n^2 + 3n`. Find the comman difference of the AP.A. 3B. 2C. 6D. 4 |
|
Answer» Correct Answer - D Given ` 1S_(n) = 3n+2n^(2)` first term of the AP . `T_(1) =3xx1+2(1)^(2)=3+2=5` and `T_(1) ==s_(2)-S_(1)` `=[3xx2+2xx(2)^(2)]-[3xx1+2xx(1)^(2) ]` ` =14-5=9` `therefore ` Common difference `(d)=T_(2)-t_(1)=9-5=4` |
|
| 6. |
If `1/a ,1/b ,1/c`are in A.P. then `(b+c)/a ,(c+a)/b ,(a+b)/c`are in :A. A.P.B. G.P.C. miscellaneousD. None of these |
|
Answer» Correct Answer - A N/a |
|
| 7. |
If a, b, c are in A.P. as well as in G.P. then correct statement is :A. `a=b=c`B. `anebnec`C. `a=bnec`D. None of these |
|
Answer» Correct Answer - A N/a |
|
| 8. |
If a, b, c are in A.P. and b-a, c-b, a are in G.P. then a:b:c=?A. `1:3:5`B. `1:2:3`C. `1:4:7`D. None of these |
|
Answer» Correct Answer - B N/a |
|
| 9. |
If `x=1+a+a^(2)+...oo, a lt 1` and `y=1+b+b^(2)+...oo, b lt 1,` then `1+ab+a^(2)b^(2)+...oo :`A. `(x+y+xy)/(x+y-1)`B. `(x+y)/(x+y-1)`C. `(xy)/(x+y-1)`D. None of these |
|
Answer» Correct Answer - C N/a |
|
| 10. |
let `S_(n)` denote the sum of the cubes of the first n natural numbers and `s_(n)` denote the sum of the first n natural numbers , then `sum_(r=1)^(n)(S_(r))/(s_(r))` equals toA. `(n(n+1)(n+2))/(6)`B. `(n(n+1))/(2)`C. `(n^(2)+3n+2)/(2)`D. None of these |
|
Answer» Correct Answer - A `sum _(r=1)^(n) (S_(r))/(S_(r))=(S_(1))/(S_(1))+(S_(2))/(S_(2))+(S_(3))/(S_(3))+...+(S_(n))/(S_(n))` Let `T_(n)` be the nth term the above series . `T_(n)=(S_(n))/(S_(n))=([(n(n+1))/(2)]^(2))/((n(n+1))/(2))` `=(n(n+1))/(2)=(1)/(2)[n^(2)=n]` `therefore `Sum of the above series `=sum T_(n)=(1)/(2)[sumn^(2)+sumn]` `=(1)/(2)[(n(n+1)(2n+1))/(6)+(n(n+1))/(2)]=(1)/(2).(n(n+1))/(2)[((2n+1))/(3)+1]` `=(1)/(4)m(n+1)[(2n+1+3)/(3)]=(1)/(4xx3)n(n+1)(2n+4)` `=(1)/(12)n(n+1)(2n+4)=(1)/(6)n(n+1)(n+2)` |
|
| 11. |
First negative term of the series `4,3(5)/(7),3(3)/(7),…` is :A. 15B. 16C. 17D. None of these |
|
Answer» Correct Answer - B N/a |
|
| 12. |
The nth term of an A.P. is `(1)/(n)` and nth term is `(1)/(m).` Its (mn)th term is :A. mnB. `(1)/(mn)`C. 1D. None of these |
|
Answer» Correct Answer - C N/a |
|
| 13. |
If `t_n`denotes the nth term of the series `2+3+6+11+18+...`then`t_(50)`=......`49^2-1`b. `49^2`c. `50^2+1`d. `49^2+2`A. `49^(2)-1`B. `49^(2)`C. `50^(2)+1`D. `49^(2)+2` |
|
Answer» Correct Answer - D Let `S_(n)` be sum of the series 2+3+6+11+18+***+`t_(50).` `therefore s_(n) =2+3+6+11+18***+t_(50)` `and S_(n) =0+2+3+6+11+18***+t_(49) +y_(50)` On subtracting Eq (ii) from eq (i) we get `0=2+1+3+5+7+***` upto 49 terms `t_(50) =2+[1+3+55+7+***`upto 49 terms] `=2+(49)/(2)[2xx1++48xx2]` `=2+(49)/(2)xx[2+96]` `=2+[49+49xx48]` `2+49xx49=2+(49)^(2)` |
|
| 14. |
The lengths of three unequal edges of a rectangular solids block are in GP . if the volume of the block is `216 cm^(3)` and the total surface area is `252cm ^(2)` then the length of the longest edge isA. 12cmB. 6 cmC. 18 cmD. 3 cm |
|
Answer» Correct Answer - A Let the length breadth and hight of rectangular solids block is `(a)/( r) ` a and ar respectively `therefore "volume " =(a)/( r) xxaxxar =216 cm^(3)` `implies a^(3) =216implies a^(3)=6^(3)` `therefore a=6` surface area ` =2((a^(2))/(r )+a^(2)r+a^(2))=252` `implies 2a^(2)((1)/( r) _r+1)=252` ` implies 2xx36((1+r^(2)+r)/(r ))=252` `implies (1+r^(2)+r)/(r ) =(252)/(2xx36)` `implies 1+r^(2)+r=(126)/(36rimplies 1+r^(2)+r=(21)/(6)r` `implies 6+6r^(2)=21rimplies 6r^(2)-15r+6=0` `therefore r(1)/(2),2` For ` r=(1)/(2) : "length"=(a)/(r)=(6xx2)/(1)=12` Breadth `=a=6` Height `=ar=6xx(1)/(2) =3` for r=2 : length `=(a)/(r ) =(6)/(2)=3` Breadth `=a=6` height `=ar=6xx2=12` |
|
| 15. |
if x , 2y and 3z are in AP where the distinct numbers x, yand z are in gp. Then the common ratio of the GP isA. 3B. `(1)/(3)`C. 2D. `(1)/(2)` |
|
Answer» Correct Answer - B Given x, 2y and 3z are in AP , then ,`2y=(x+3z)/(2)` `implies y=(x+3z)/(4)` `implies 4y=x+3z` and x,y,z are in GP then `(y)/(x)=(z)/(y) =lamda` `implies y=x lamda and z=lamday - lamda^(2)x` On subsitiuting these values in Eq (i) we get `4(x, lamda )=x+3(lamda^(2)x)` `implies 4lamdax=x+3lamda^(2)x` `implies 4lamda=1+3lamda^(2)` `implies 3lamda ^(2) -4lamda+1=0` `=(3lamda-10(lamda-1)=0` `therefore lamda =(1)/(3).lamda =1 ` |
|
| 16. |
The number of common terms in the series 17+21+25+…+417 and the series 16+21+26+…+466 are :A. 19B. 20C. 21D. None of these |
|
Answer» Correct Answer - B N/a |
|
| 17. |
(ii)If the third term of G.P.is `4`, then find the product of first five termsA. `4^(3)`B. `4^(4)`C. `4^(5)`D. None of these |
|
Answer» Correct Answer - C It is given that `T_(3)=4` let and r the term and common ratio respectively then `ar^(2)=4` Product of first 5 terms `=a.ar .ar^(2).ar^(3).ar^(4)`***(i) `a^(5) r^(10)=(ar^(2))^(5)=(4)^(5)` [using Eq ,(i) ] |
|
| 18. |
If the `p^(t h)a n dq^(t h)`terms of a G.P. are `qa n dp`respectively, show that `(p+q)^(t h)`term is `((q^p)/(p^q))^(1/(p-q))`. |
|
Answer» Let the first term and common ratio of GP be and r, respectively . Accodring to the question , pth term = q `implies a.r^(p-1)=q` and q th term =p `implies ar^(q-1)=p` On dividing Eq (i) by Eq (ii) We get `(ar^(p-1))/(ar^(q-1))=(q)/(p)` ` implies r^(p-1-q+1)=(q)/(p)` `implies r^(p-q)=(q)/(p)implies r((q)/(p))^((1)/(p-q))` On substituting the value of r in Eq (i) , we get `a((q)/(p))^((p-1)/(p-q))=qimplies a=(q)/(((q)/(p))^((p-1)/(p-q)))=q. ((p)/(q))^(^(p-1)/(p-q))` `therefore (p+q) "th term "T_(p+q)= a.r ^(p+q-1)=q/((p)/(q))^((p-1)/(p-q)). (r) ^(p+q-1)` `=q((p)/(q))^((p-1)/(p-q))[((q)/(p))^((1)/(p-q))]^(p+q-1)=q.((p)/(q))^((p-1)/(p-q))((q)/(p))^((p+q-1)/(p-q))` ` =q.((p)/(q))^((p-1)/(p-q))((p)/(q))^((-(p+q-1))/(p-q))=q.((p)/(q))^((p-1)/(p-q)-((p+q-1))/(p-q))` `=q.((p)/(q))^((p-1-p-q+1)/(p-q)) =q.((p)/(q))^((p-1-p-q+1)/(p-q))=q./((p)/(q))^((-q)/(p-q))` ` a=q.((p)/(q))^((p-1)/(p-q))` Now (p+q) th term i.e., `a_(p+q)=ar^(p+q-1)` `=.((p)/(q))^((p-1)/(p-q)).((q)/p)^((p+q-1)/(p-q))` ` =q.q^((p=q-1-p+1)/(p-q))/(p^((p+q-1-p+1)/(p-q)))=q.(q^((q)/(p-q))/(p^((q)/(p-q))))` |
|